1567768-26-6Relevant articles and documents
Novel PEGylated derivatives of α-tocopherol for nanocarrier formulations; synthesis, characterization and in vitro cytotoxicity against MCF-7 breast cancer cells
Esmaeelzadeh, Maryam,Mazarei, Zeinab,Rafati, Hasan,Salehi, Peyman,Savadkouhi, Niloofar
, (2021)
Despite numerous beneficial therapeutic effects namely antioxidant and anti-inflammatory activity, Vitamin E has limited clinical applications due to its low water solubility. Throughout the present work, α-tocopherol's new PEGylated derivatives alongside with polyethylene glycol 300 (α-TPGT300), 400 (α-TPGT400), and 1000 (α-TPGT1000) were synthesized. A 1,2,3-triazole ring was utilized as a linker for the attachment of alpha tocopherol to the PEGs through a click reaction. The purified derivatives were characterized by the means of 1H NMR, 13C NMR, mass spectroscopy, UV–vis and FT-IR methods. Synthesized derivatives’ capacity to produce self-assembly nanoparticles was evaluated employing the critical micelle concentration (CMC) values. The stability of the micelles was studied by size analysis. In vitro cytotoxicity of the products was investigated using MTT assay against MCF-7 breast cancer cells. The IC50 value for TPGT1000 after 24 h treatment was 15.0 ± 1.8 μM, whereas no significant cytotoxicity effect was observed following the treatment of MCF-7 cells by TPGT300, 400. The present study showed that polymeric micelle TPGT1000 possessed better physicochemical and biological properties including relatively lower CMC value, higher stability in FBS environment in addition to higher cytotoxicity against MCF-7 breast cancer cells compared to the lower molecular weight PEGylated derivatives. These results confirmed that increasing PEG chain length left a positive effect on the polymeric micelle properties and also improved the cytotoxicity effect of new PEGylated vitamin E derivatives.
Synthesis of Bioactive Complex Small Molecule-Ciprofloxacin Conjugates and Evaluation of Their Antibacterial Activity
Upadhyay, Rahul,Kumar, Rahul,Jangra, Manoj,Rana, Rohit,Nayal, Onkar S.,Nandanwar, Hemraj,Maurya, Sushil K.
, p. 440 - 445 (2020)
Conjugates between pharmaceuticals and small molecules enable access to a vast chemical space required for the discovery of new lead molecules with modified therapeutic potential. However, the dearth of specific chemical reactions that are capable of functionalizing drugs and bioactive natural products presents a formidable challenge for preparing their conjugates. Here, we report a support-free CuI-nanoparticle-catalyzed strategy for conjugating electron-deficient and electron-rich terminal alkynes with a ciprofloxacin methyl ester. Our conjugation technique exploits the late-stage functionalization of bioactive natural products such as tocopherol, vasicinone, amino acids, and pharmaceuticals such as aspirin and paracetamol to provide conjugates in excellent yields under mild and green conditions. This protocol also enabled the synthesis of (hetero)arene-ciprofloxacin 1,4-disubstituted 1,2,3-triazoles in good yields and high regioselectivities. These synthesized ciprofloxacin conjugates were evaluated in vitro for their antibacterial activity against a panel of relevant bacteria. A significant number of conjugates showed comparable activity against Gram-positive and Gram-negative bacteria. Moreover, some conjugates exhibited less toxicity than ciprofloxacin against two mammalian cell lines, suggesting the utility for the future investigation of these compounds for in vivo efficacy and pharmacokinetic studies.
Synthesis and properties of double-stranded RNA-bindable oligodiaminogalactose derivatives conjugated with vitamin e
Iwata, Rintaro,Nishina, Kazutaka,Yokota, Takanori,Wada, Takeshi
, p. 1394 - 1403 (2014/03/21)
RNA interference (RNAi) is a gene-regulating system that is controlled by external short interfering RNAs (siRNAs). Sequence selective gene silencing by siRNA shows promise in clinical research. However, there have been few efficient methods for delivering siRNAs to target cells. In this study, we propose a novel type of RNA duplex-bindable molecule with an oligodiaminosaccharide structure. These 2,6-diamino-2,6-dideoxy-(1-4)-β-d-galactopyranose oligomers (oligodiaminogalactoses; ODAGals) conjugated with α-tocopherol (vitamin E; VE) or a VE analog were designed as novel siRNA-bindable molecules that can be utilized to deliver RNAi drugs to the liver. Among these compounds, the VE analog-bound ODAGal was suggested to bind to RNA duplexes without inhibiting RNAi activity.