1569303-41-8Relevant articles and documents
Enzymatic Glycosylation of Phenolic Antioxidants: Phosphorylase-Mediated Synthesis and Characterization
De Winter, Karel,Dewitte, Griet,Dirks-Hofmeister, Mareike E.,De Laet, Sylvie,Pelantová, Helena,K?en, Vladimír,Desmet, Tom
, p. 10131 - 10139 (2015)
Although numerous biologically active molecules exist as glycosides in nature, information on the activity, stability, and solubility of glycosylated antioxidants is rather limited to date. In this work, a wide variety of antioxidants were glycosylated using different phosphorylase enzymes. The resulting antioxidant library, containing α/β-glucosides, different regioisomers, cellobiosides, and cellotriosides, was then characterized. Glycosylation was found to significantly increase the solubility and stability of all evaluated compounds. Despite decreased radical-scavenging abilities, most glycosides were identified to be potent antioxidants, outperforming the commonly used 2,6-bis(1,1-dimethylethyl)-4-methylphenol (BHT). Moreover, the point of attachment, the anomeric configuration, and the glycosidic chain length were found to influence the properties of these phenolic glycosides.
Biphasic catalysis with disaccharide phosphorylases: Chemoenzymatic synthesis of α- D -glucosides using sucrose phosphorylase
De Winter, Karel,Desmet, Tom,Devlamynck, Tim,Van Renterghem, Lisa,Verhaeghe, Tom,Pelantova, Helena,Kren, Vladimir,Soetaert, Wim
, p. 781 - 787 (2014/07/08)
Thanks to its broad acceptor specificity, sucrose phosphorylase (SP) has been exploited for the transfer of glucose to a wide variety of acceptor molecules. Unfortunately, the low affinity (Km > 1 M) of SP towards these acceptors typically urges the addition of cosolvents, which often either fail to dissolve sufficient substrate or progressively give rise to enzyme inhibition and denaturation. In this work, a buffer/ethyl acetate ratio of 5:3 was identified to be the optimal solvent system, allowing the use of SP in biphasic systems. Careful optimization of the reaction conditions enabled the synthesis of a range of α-d-glucosides, such as cinnamyl α-d-glucopyranoside, geranyl α-d-glucopyranoside, 2-O-α-d-glucopyranosyl pyrogallol, and series of alkyl gallyl 4-O-α-d-glucopyranosides. The usefulness of biphasic catalysis was further illustrated by comparing the glucosylation of pyrogallol in a cosolvent and biphasic reaction system. The acceptor yield for the former reached only 17.4%, whereas roughly 60% of the initial pyrogallol was converted when using biphasic catalysis.