Welcome to LookChem.com Sign In|Join Free

CAS

  • or

16015-11-5

Post Buying Request

16015-11-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

16015-11-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 16015-11-5 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,6,0,1 and 5 respectively; the second part has 2 digits, 1 and 1 respectively.
Calculate Digit Verification of CAS Registry Number 16015-11:
(7*1)+(6*6)+(5*0)+(4*1)+(3*5)+(2*1)+(1*1)=65
65 % 10 = 5
So 16015-11-5 is a valid CAS Registry Number.
InChI:InChI=1/C6H10O/c1-6-4-2-3-5-7-6/h4H,2-3,5H2,1H3

16015-11-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 6-methyl-3,4-dihydro-2H-pyran

1.2 Other means of identification

Product number -
Other names 3,4-Dihydro-6-methyl-2H-pyran

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:16015-11-5 SDS

16015-11-5Relevant articles and documents

S-Block cooperative catalysis: Alkali metal magnesiate-catalysed cyclisation of alkynols

Fairley, Michael,Davin, Laia,Hernán-Gómez, Alberto,García-álvarez, Joaquín,O'Hara, Charles T.,Hevia, Eva

, p. 5821 - 5831 (2019/06/18)

Mixed s-block metal organometallic reagents have been successfully utilised in the catalytic intramolecular hydroalkoxylation of alkynols. This success has been attributed to the unique manner in which these reagents can overcome the challenges of the reaction: namely OH activation and coordination to and then addition across a CC bond. In order to optimise the reaction conditions and to garner vital catalytic system requirements, a series of alkali metal magnesiates were enlisted for the catalytic intramolecular hydroalkoxylation of 4-pentynol. In a prelude to the main investigation, the homometallic magnesium dialkyl reagent MgR2 (where R = CH2SiMe3) was utilised. This reagent was unsuccessful in cyclising the alcohol into 2-methylenetetrahydrofuran 2a or 5-methyl-2,3-dihydrofuran 2b, even in the presence of multidentate Lewis donor molecules such as N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PMDETA). Alkali metal magnesiates MIMgR3 (when MI = Li, Na or K) performed the cyclisation unsatisfactorily both in the absence/presence of N,N,N′,N′-tetramethylethylenediamine (TMEDA) or PMDETA. When higher-order magnesiates (i.e., MI2MgR4) were employed, in general a marked increase in yield was observed for MI = Na or K; however, the reactions were still sluggish with long reaction times (22-36 h). A major improvement in the catalytic activity of the magnesiates was observed when the crown ether molecule 15-crown-5 was combined with sodium magnesiate Na2MgR4(TMEDA)2 furnishing yields of 87% with 2a:2b ratios of 95:5 after 5 h. Similar high yields of 88% with 2a:2b ratios of 90:10 after 3 h were obtained combining 18-crown-6 with potassium magnesiate K2MgR4(PMDETA)2. Having optimised these systems, substrate scope was examined to probe the range and robustness of 18-crown-6/K2MgR4(PMDETA)2 as a catalyst. A wide series of alkynols, including terminal and internal alkynes which contain a variety of potentially reactive functional groups, were cyclised. In comparison to previously reported monometallic systems, bimetallic 18-crown-6/K2MgR4(PMDETA)2 displays enhanced reactivity towards internal alkynol-cyclisation. Kinetic studies revealed an inhibition effect of substrate on the catalysts via adduct formation and requiring dissociation prior to the rate limiting cyclisation step.

Alkaline earth catalysis of alkynyl alcohol hydroalkoxylation/cyclization

Brinkmann, Christine,Barrett, Anthony G. M.,Reid, Stephanie,Hill, Michael S.,Procopiou, Panayiotis A.

, p. 7287 - 7297,11 (2020/09/02)

Heavier alkaline earth bis(trimethylsilyl)amides [Ae{N(SiMe 3)2}2]2 (Ae = Ca, Sr, Ba) are shown to act as effective precatalysts for the regioselective intramolecular hydroalkoxylation/cyclization of a wide range of alkynyl and allenyl alcohols. In the majority of cases, cyclization of alkynyl alcohols produces mixtures of the possible endo- and exocyclic enol ether products, rationalized as a consequence of alkynylalkoxide isomerization to the corresponding allene derivatives. Cyclization rates for terminal alkynyl alcohols were found to be significantly higher than for substrates bearing internal alkynyl substituents, while the efficacy of cyclization was in general found to be determined by a combination of stereoelectronic influences and the thermochemical viability of the specific alkaline earth metal catalysis, which we suggest is determined by the individual M-O bond strengths. Kinetic studies have provided a rate law pertaining to a pronounced catalyst inhibition with increasing [substrate], indicating that turnover-limiting insertion of C-C unsaturation into the M-O bond requires the dissociation of substrate molecules away from the Lewis acidic alkaline earth center.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 16015-11-5