16470-09-0Relevant articles and documents
LONIDAMINE ANALOGUES FOR FERTILITY MANAGEMENT
-
Page/Page column 69, (2011/02/24)
Fertility management can include: administering to the subject one or more doses of a compound according to Formula I so as to reduce fertility in the subject. Fertility management can also include administering an effective amount of the compound to: impair Sertoli cell function in a male subject; inhibit spermatogenesis in the subject; reduce testis weight in the subject; reduce ovary weight in a female subject; reduce serum progesterone in the female subject; impair ovarian follicle function in the female subject; causing reversible fertility in the subject. In order to return fertility, the method can include ceasing administration of the compound to the subject so as to return fertility in the subject. The compound can be administered for irreversibly sterilizing the subject.
Esters of 2-phenylalkanenitriles and antifungal compositions containing them
-
, (2008/12/06)
Esters of 2-phenylalkanenitriles, such as 3-acetoxy-2-(2-chloro-5-(difluoromethoxy)phenyl)propanenitrile and 3-acetoxy-2-(4-chlorophenyl)propanenitrile, and compositions containing such esters, are useful as fungicides at very low concentrations.
Lonidamine analogues and their use in male contraception and cancer treatment
-
, (2008/06/13)
Novel compounds useful for inhibiting spermatogenesis and cancer treatment, and in particular as inhibitors of heat shock proteins and/or elongation factor 1 alpha.
SELECTIVITY AND MECHANISM IN THE SIDE-CHAIN HALOGENATION OF METHYLBENZENES PROMOTED PHOTOCHEMICALLY AND BY METAL COMPLEXES IN THE PRESENCE OF HALIDE IONS
Baciocchi, Enrico,Crescenzi, Manuela
, p. 6525 - 6536 (2007/10/02)
The intramolecular selectivity in a variety of side-chain halogenations of alkyl-aromatics has been determined in AcOH by measuring the isomeric distribution in the reactions of 4-t-butyl- and 4-chloro-1,2-dimethylbenzene (1 and 2, respectively) with: Br2/hν, CAN/Br-, CAN=cerium(IV) ammonium nitrate, cobalt(III) acetate/Br-, S2O8=/Br-, N-bromosuccinimide (in CCl4), Cl2/hν, CAN/Cl-, cobalt(III) acetate/Cl-.In the bromination reactions selectivity is independent of the reaction conditions, thus suggesting that in all brominating systems Br. is the actual reacting species.Very surprisingly, with 1 as the substrate, Cl2/hν is a more selective system than Br2/hν.With 2 the two systems display similar selectivity.It has been suggested that in AcOH the transition state for photochlorination has an electron transfer character which increases as the substrate becomes more electron rich.The idea of a "variable" transition state for the photochlorination in AcOH is supported by data of relative reactivity of substituted toluenes indicating that the effect on the rate increases as the substituent becomes more electron donor.AcOH must have an essential role in this respect since in CCl4 situation returns to be "normal" with chlorination less selective than bromination.Selectivity of CAN/Cl- is very similar to that of Cl2/hν, whereas significant differences are observed with cobalt(III) acetate/Cl-.Probably Cl. and a cobalt(III) chloride complex are the reacting species in CAN/Cl- and cobalt(III) acetate/Cl-, respectively.