Welcome to LookChem.com Sign In|Join Free

CAS

  • or

166947-09-7

Post Buying Request

166947-09-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

166947-09-7 Usage

Uses

3-(4-Trifluoromethylphenyl)propanal is an impurity of Cinacalcet (C441800), used in clinical trial in secondary hyperparathyroidism.

Check Digit Verification of cas no

The CAS Registry Mumber 166947-09-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,6,6,9,4 and 7 respectively; the second part has 2 digits, 0 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 166947-09:
(8*1)+(7*6)+(6*6)+(5*9)+(4*4)+(3*7)+(2*0)+(1*9)=177
177 % 10 = 7
So 166947-09-7 is a valid CAS Registry Number.
InChI:InChI=1/C10H9F3O/c11-10(12,13)9-5-3-8(4-6-9)2-1-7-14/h3-7H,1-2H2

166947-09-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-[4-(Trifluoromethyl)phenyl]propanal

1.2 Other means of identification

Product number -
Other names PC4059

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:166947-09-7 SDS

166947-09-7Relevant articles and documents

Access to Trisubstituted Fluoroalkenes by Ruthenium-Catalyzed Cross-Metathesis

Nouaille, Augustin,Pannecoucke, Xavier,Poisson, Thomas,Couve-Bonnaire, Samuel

, p. 2140 - 2147 (2021/03/06)

Although the olefin metathesis reaction is a well-known and powerful strategy to get alkenes, this reaction remained highly challenging with fluororalkenes, especially the Cross-Metathesis (CM) process. Our thought was to find an easy accessible, convenient, reactive and post-functionalizable source of fluoroalkene, that we found as the methyl 2-fluoroacrylate. We reported herein the efficient ruthenium-catalyzed CM reaction of various terminal and internal alkenes with methyl 2-fluoroacrylate giving access, for the first time, to trisubstituted fluoroalkenes stereoselectively. Unprecedent TON for CM involving fluoroalkene, up to 175, have been obtained and the reaction proved to be tolerant and effective with a large range of olefin partners giving fair to high yields in metathesis products. (Figure presented.).

Binuclear Pd(I)-Pd(I) Catalysis Assisted by Iodide Ligands for Selective Hydroformylation of Alkenes and Alkynes

Zhang, Yang,Torker, Sebastian,Sigrist, Michel,Bregovi?, Nikola,Dydio, Pawe?

supporting information, p. 18251 - 18265 (2020/11/02)

Since its discovery in 1938, hydroformylation has been thoroughly investigated and broadly applied in industry (>107 metric ton yearly). However, the ability to precisely control its regioselectivity with well-established Rh- or Co-catalysts has thus far proven elusive, thereby limiting access to many synthetically valuable aldehydes. Pd-catalysts represent an appealing alternative, yet their use remains sparse due to undesired side-processes. Here, we report a highly selective and exceptionally active catalyst system that is driven by a novel activation strategy and features a unique Pd(I)-Pd(I) mechanism, involving an iodide-assisted binuclear step to release the product. This method enables β-selective hydroformylation of a large range of alkenes and alkynes, including sensitive starting materials. Its utility is demonstrated in the synthesis of antiobesity drug Rimonabant and anti-HIV agent PNU-32945. In a broader context, the new mechanistic understanding enables the development of other carbonylation reactions of high importance to chemical industry.

Chemo- and Regioselective Organo-Photoredox Catalyzed Hydroformylation of Styrenes via a Radical Pathway

Huang, He,Yu, Chenguang,Zhang, Yueteng,Zhang, Yongqiang,Mariano, Patrick S.,Wang, Wei

supporting information, p. 9799 - 9802 (2017/08/02)

An unprecedented, chemo- and regioselective, organo-photoredox catalyzed hydroformylation reaction of aryl olefins with diethoxyacetic acid as the formylation reagent is described. In contrast to traditional transition metal promoted ionic hydroformylation reactions, the new process follows a unique photoredox promoted, free radical pathway. In this process, a formyl radical equivalent, produced from diethoxacetic acid through a dye (4CzIPN) photocatalyzed, sequential oxidation-decarboxylation route, regio- and chemoselectively adds to a styrene substrate. Importantly, under the optimized reaction conditions the benzylic radical formed in this manner is reduced by SET from the anion radical of 4CzIPN to generate a benzylic anion. Finally, protonation produces the hydroformylation product. By using the new protocol, aldehydes can be generated regioselectively in up to 90% yield. A broad array of functional groups is tolerated in the process, which takes place under mild, metal-free conditions.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 166947-09-7