179913-03-2Relevant articles and documents
Laccase-mediated Oxidations of Propargylic Alcohols. Application in the Deracemization of 1-arylprop-2-yn-1-ols in Combination with Alcohol Dehydrogenases
González-Granda, Sergio,Méndez-Sánchez, Daniel,Lavandera, Iván,Gotor-Fernández, Vicente
, p. 520 - 527 (2019/11/16)
The catalytic system composed by the laccase from Trametes versicolor and the oxy-radical TEMPO has been successfully applied in the sustainable oxidation of fourteen propargylic alcohols. The corresponding propargylic ketones were obtained in most cases in quantitative conversions (87–>99 % yield), demonstrating the efficiency of the chemoenzymatic methodology in comparison with traditional chemical oxidants, which usually lead to problems associated with the formation of by-products. Also, the stereoselective reduction of propargylic ketones was studied using alcohol dehydrogenases such as the one from Ralstonia species overexpressed in E. coli or the commercially available evo-1.1.200, allowing the access to both alcohol enantiomers mostly with complete conversions and variable selectivities depending on the aromatic pattern substitution (97–>99 % ee). To demonstrate the compatibility of the laccase-mediated oxidation and the alcohol dehydrogenase-catalyzed bioreduction, a deracemization strategy starting from the racemic compounds was developed through a sequential one-pot two-step process, obtaining a selection of (S)- or (R)-1-arylprop-2-yn-1-ols with excellent yields (>98 %) and selectivities (>98 % ee) depending on the alcohol dehydrogenase employed.
Asymmetric synthesis of a new salen type-titanium complex as the catalyst for asymmetric trimethylsilylcyanation of aldehydes
Lin, Zheng-Chang,Chen, Chinpiao
experimental part, p. 726 - 737 (2011/04/23)
This work describes the asymmetric synthesis of a new salen-type ligand via a Diels-Alder reaction and Curtius rearrangement. The ligand with a norbornane skeleton was used in the trimethylsilylcyanation of aldehydes, but the enantioselectivity was 55%ee. The norborane skeleton was cleaved to destroy this rigidity, and the eanatioselectivity was thereby increased to 85%ee.