Welcome to LookChem.com Sign In|Join Free

CAS

  • or

181825-27-4

Post Buying Request

181825-27-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

181825-27-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 181825-27-4 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 1,8,1,8,2 and 5 respectively; the second part has 2 digits, 2 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 181825-27:
(8*1)+(7*8)+(6*1)+(5*8)+(4*2)+(3*5)+(2*2)+(1*7)=144
144 % 10 = 4
So 181825-27-4 is a valid CAS Registry Number.

181825-27-4Relevant articles and documents

Trisaminocyclopropenium Cations as Small-Molecule Organic Fluorophores: Design Guidelines and Bioimaging Applications

Guest, Matt,Mir, Roya,Foran, Gregory,Hickson, Brianne,Necakov, Aleksandar,Dudding, Travis

, p. 13997 - 14011 (2020)

The discovery of fluorescence two centuries ago ushered in, what is today, an illuminating field of science rooted in the rational design of photochromic molecules for task-specific bio-, material-, and medical-driven applications. Today, this includes applications in bioimaging and diagnosis, photodynamic therapy regimes, in addition to photovoltaic devices and solar cells, among a vast multitude of other usages. In furthering this indispensable area of daily life and modern-day scientific research, we report herein the synthesis of a class of trisaminocyclopropenium fluorophores along with a systematic investigation of their unique molecular and electronic dependent photophysical properties. Among these fluorophores, tris[N(naphthalen-2-ylmethyl)phenylamino] cyclopropenium chloride (TNTPC) displayed a strong photophysical profile including a 0.92 quantum yield ascribed to intramolecular charge transfer and intramolecular through-space conjugation. Moreover, this cyclopropenium-based fluorophore functions as a competent imaging agent for DNA visualization and nuclear counterstaining in cell culture. To facilitate the broader use of these compounds, design principles supported by density functional theory calculations for engineering analogs of this class of fluorophores are offered. Collectively, this study adds to the burgeoning interest in cyclopropenium compounds and their unique properties as fluorophores with uses in bioimaging applications.

Tungsten-Catalyzed Direct N-Alkylation of Anilines with Alcohols

Lan, Xiao-Bing,Ye, Zongren,Yang, Chenhui,Li, Weikang,Liu, Jiahao,Huang, Ming,Liu, Yan,Ke, Zhuofeng

, p. 860 - 865 (2021/01/18)

The implementation of non-noble metals mediated chemistry is a major goal in homogeneous catalysis. Borrowing hydrogen/hydrogen autotransfer (BH/HA) reaction, as a straightforward and sustainable synthetic method, has attracted considerable attention in the development of non-noble metal catalysts. Herein, we report a tungsten-catalyzed N-alkylation reaction of anilines with primary alcohols via BH/HA. This phosphine-free W(phen)(CO)4 (phen=1,10-phenthroline) system was demonstrated as a practical and easily accessible in-situ catalysis for a broad range of amines and alcohols (up to 49 examples, including 16 previously undisclosed products). Notably, this tungsten system can tolerate numerous functional groups, especially the challenging substrates with sterically hindered substituents, or heteroatoms. Mechanistic insights based on experimental and computational studies are also provided.

Ruthenium(ii) complexes with N-heterocyclic carbene-phosphine ligands for theN-alkylation of amines with alcohols

Huang, Ming,Li, Yinwu,Lan, Xiao-Bing,Liu, Jiahao,Zhao, Cunyuan,Liu, Yan,Ke, Zhuofeng

supporting information, p. 3451 - 3461 (2021/05/03)

Metal hydride complexes are key intermediates forN-alkylation of amines with alcohols by the borrowing hydrogen/hydrogen autotransfer (BH/HA) strategy. Reactivity tuning of metal hydride complexes could adjust the dehydrogenation of alcohols and the hydrogenation of imines. Herein we report ruthenium(ii) complexes with hetero-bidentate N-heterocyclic carbene (NHC)-phosphine ligands, which realize smart pathway selection in theN-alkylated reactionviareactivity tuning of [Ru-H] species by hetero-bidentate ligands. In particular, complex6cbwith a phenyl wingtip group and BArF?counter anion, is shown to be one of the most efficient pre-catalysts for this transformation (temperature is as low as 70 °C, neat conditions and catalyst loading is as low as 0.25 mol%). A large variety of (hetero)aromatic amines and primary alcohols were efficiently converted into mono-N-alkylated amines in good to excellent isolated yields. Notably, aliphatic amines, challenging methanol and diamines could also be transformed into the desired products. Detailed control experiments and density functional theory (DFT) calculations provide insights to understand the mechanism and the smart pathway selectionvia[Ru-H] species in this process.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 181825-27-4