Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2037-26-5

Post Buying Request

2037-26-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2037-26-5 Usage

Chemical Description

Toluene-d8 is deuterated toluene, a colorless liquid used as a solvent in NMR spectroscopy.

Chemical Properties

colourless liquid

Uses

Different sources of media describe the Uses of 2037-26-5 differently. You can refer to the following data:
1. Toluene-d8 is the labelled version of Toluene, a hydrocarbon fuel with many applications. It is also highly biotoxic, with sterilization applications to microbial cultures and the ability to lyse bact erial cells.
2. Toluene-d8 can be used as solvent to study the nuclear magnetic resonance spectra of the corresponding polymethylene block copolymers.

General Description

Toluene-d8 is a non polar, aromatic solvent.

Biochem/physiol Actions

Toluene-d8 is used in the determination of magnitude of magnetic interactions, hydrogen bond geometry and its association with solvent polarity. Toluene is highly biotoxic and lethal for microorganisms, therefore can be used as a sterilant.

Check Digit Verification of cas no

The CAS Registry Mumber 2037-26-5 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,0,3 and 7 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 2037-26:
(6*2)+(5*0)+(4*3)+(3*7)+(2*2)+(1*6)=55
55 % 10 = 5
So 2037-26-5 is a valid CAS Registry Number.
InChI:InChI=1/C7H8/c1-7-5-3-2-4-6-7/h2-6H,1H3/i1D3,2D,3D,4D,5D,6D

2037-26-5 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (42356)  Toluene-d8, 100% (Isotopic)   

  • 2037-26-5

  • 2each

  • 549.0CNY

  • Detail
  • Alfa Aesar

  • (42356)  Toluene-d8, 100% (Isotopic)   

  • 2037-26-5

  • 10each

  • 3145.0CNY

  • Detail
  • Alfa Aesar

  • (36477)  Toluene-d8, 99.6%(Isotopic)   

  • 2037-26-5

  • 1g

  • 315.0CNY

  • Detail
  • Alfa Aesar

  • (36477)  Toluene-d8, 99.6%(Isotopic)   

  • 2037-26-5

  • 10g

  • 1336.0CNY

  • Detail
  • Aldrich

  • (570710)  Toluene-d8  anhydrous, ≥99.6 atom % D

  • 2037-26-5

  • 570710-50G

  • 5,177.25CNY

  • Detail
  • Aldrich

  • (233382)  Toluene-d8  "100%", 99.96 atom % D

  • 2037-26-5

  • 233382-1G

  • 933.66CNY

  • Detail
  • Aldrich

  • (233382)  Toluene-d8  "100%", 99.96 atom % D

  • 2037-26-5

  • 233382-10X0.5ML

  • 2,846.61CNY

  • Detail
  • Aldrich

  • (233382)  Toluene-d8  "100%", 99.96 atom % D

  • 2037-26-5

  • 233382-10X1ML

  • 5,426.46CNY

  • Detail
  • Aldrich

  • (233382)  Toluene-d8  "100%", 99.96 atom % D

  • 2037-26-5

  • 233382-10G

  • 5,028.66CNY

  • Detail
  • Aldrich

  • (237035)  Toluene-d8  "100%", 99.96 atom % D

  • 2037-26-5

  • 237035-1PAK

  • 2,610.27CNY

  • Detail
  • Aldrich

  • (425788)  Toluene-d8  "100%", 99.96 atom % D

  • 2037-26-5

  • 425788-1PAK

  • 4,979.52CNY

  • Detail
  • Aldrich

  • (434388)  Toluene-d8  ≥99.6 atom % D

  • 2037-26-5

  • 434388-5G

  • 655.20CNY

  • Detail

2037-26-5SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name 1,2,3,4,5-pentadeuterio-6-(trideuteriomethyl)benzene

1.2 Other means of identification

Product number -
Other names deuterated toluene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2037-26-5 SDS

2037-26-5Relevant articles and documents

Synthetic method of toluene-d8

-

Paragraph 0027-0030, (2020/08/02)

The invention relates to a synthetic method of toluene-d8, and belongs to a synthetic technology of deuterated compounds. The preparation method comprises the following steps: slowly adding penta-halogenated toluene into a solvent to prepare a clear solution A; transferring the solution A into an autoclave, slowly adding a deuterated reagent into the solution obtained in the step 1 under the protection of nitrogen, adding a catalyst B to obtain a mixed solution C, performing filtering, and dropwise adding deionized water to obtain a filtrate D; and adding heavy water, a catalyst F and zeoliteafter fractionation, finally fractionating the solution, and collecting a fraction at 110 DEG C to obtain toluene-d8. According to the method, halogen deuterium exchange reaction on a benzene ring andhydrogen deuterium exchange reaction on methyl are carried out step by step, so that complete deuteration reaction is facilitated, and the deuteration rate of the obtained product is high; and the use of the catalyst reduces the use amount of a deuterated reagent, reduces the production cost, and can effectively break the dependence of the domestic market on import.

Synthesis and chemistry of bis(triisopropylphosphine) nickel(i) and nickel(0) precursors

Beck, Robert,Shoshani, Manar,Krasinkiewicz, Jonathan,Hatnean, Jillian A.,Johnson, Samuel A.

, p. 1461 - 1475 (2013/03/13)

High yield syntheses of (iPr3P)2NiX (3a-c), (where X = Cl, Br, I) were established by comproportionation of ( iPr3P)2NiX2 (1a-c) with ( iPr3P)2Ni(η2-C2H 4) (2). Reaction of 1a with either NaH or LiHBEt3 provided (iPr3P)2NiHCl (4), along with 3a as a side-product. Reduction of (iPr3P)2NiCl (3a-c) with Mg in presence of nitrogen saturated THF solutions provided the dinitrogen complex [(iPr3P)2Ni]2(μ- η1:η1-N2) (5). In aromatic solvents such as benzene and toluene a thermal equilibrium exists between 5 and the previously reported monophosphine solvent adducts (iPr 3P)Ni(η6-arene) (6a,b). Reaction of 5 with carbon dioxide provided (iPr3P)2Ni(η2- CO2) (7). Thermolysis of 9 at 60 °C provided a mixture of products that included the reduction product (iPr3P) 2Ni(CO)2 (8) along with iPr3PO, as identified by NMR spectroscopy. Complex 8 was also prepared in high yield from the reaction of 5 with CO. Reaction of 5 with CS2 gave the dimeric carbon disulfide complex [(iPr3P)Ni(μ- η1:η2-CS2)]2 (9). Diphenylphosphine reacts with 5 to form the dinuclear Ni(i) complex [( iPr3P)Ni(μ2-PPh2)]2 (10). Complex 5 reacts with PhSH to form (iPr3P) 2Ni(SPh)(H) (11), which slowly loses H2 and iPr3P to form the dimeric Ni(i) complex [( iPr3P)Ni(μ2-SPh)]2 (12) at room temperature. Complex 12 was also accessed by salt metathesis from the reaction of (iPr3P)2NiCl (3a) with PhSLi, which demonstrates the utility of 3a as a Ni(i) precursor. With the exception of 6a,b, all compounds were structurally characterized by single-crystal X-ray crystallography. The Royal Society of Chemistry 2013.

An N.M.R. Study of Electron Donor-Electron Acceptor Interaction Between Aromatic Hydrocarbons and Diazines

Hurst, Derek T.,Thakrar, Usha B.,Wells, Clifford H. J.,Wyer, John

, p. 1313 - 1319 (2007/10/02)

Equilibrium constants have been measured by n.m.r. spectroscopy for the electron donor-electron acceptor interaction between a number of aromatic hydrocarbons and diazines.The values obtained have shown that the interaction is weak, and that the aromatic hydrocarbon acts as the electron donor and the diazine as the electron acceptor in the systems studied.Chemical-shift data have provided evidence for the relative positioning of the donor and acceptor components within the various complexes.The effect of temperature on the equilibrium constant for complex formation between (2H6)benzene and pyrazine has shown that the enthalpy of format ion is close to zero.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2037-26-5