2078-01-5Relevant articles and documents
Glycine receptor antagonists and the use thereof
-
, (2008/06/13)
Methods of treating or preventing neuronal loss associated with stroke, ischemia, CNS trauma, hypoglycemia and surgery, as well as treating neurodegenerative diseases including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease and Down's syndrome, treating or preventing the adverse consequences of the hyperactivity of the excitatory amino acids, as well as treating anxiety, chronic pain, convulsions, inducing anesthesia and treating psychosis are disclosed by administering to an animal in need of such treatment a compound having high affinity for the glycine binding site, lacking PCP side effects and which crosses the blood brain barrier of the animal. Also disclosed are novel 1,4-dihydroquinoxaline-2,3-diones, and pharmaceutical compositions thereof. Also disclosed are highly soluble ammonium salts of 1,4-dihydroquinoxaline-2,3-diones.
Synthesis and structure-activity relationships of substituted 1,4- dihydroquinoxaline-2,3-diones: Antagonists of N-methyl-D-aspartate (NMDA) receptor glycine sites and non-NMDA glutamate receptors
Keana,Kher,Sui Xiong Cai,Dinsmore,Glenn,Guastella,Huang,Ilyin,Lu,Mouser,Woodward,Weber
, p. 4367 - 4379 (2007/10/02)
A series of mono-, di-, tri-, and tetrasubstituted 1,4- dihydroquinoxaline-2,3-diones (QXs) were synthesized and evaluated as antagonists at N-methyl-D-aspartate (NMDA)/glycine sites and α-amino-3- hydroxy-5-methylisoxazole-4-propionic acid-preferring non-NMDA receptors. Antagonist potencies were measured by electrical assays in Xenopus oocytes expressing rat whole brain poly(A)+ RNA. Trisubstituted QXs 17a (ACEA 1021), 17b (ACEA 1031), 24a, and 27, containing a nitro group in the 5 position and halogen in the 6 and 7 positions, displayed high potency (K(b) ~ 6-8 nM) at the glycine site, moderate potency at non-NMDA receptors (K(b) = 0.9-1.5 μM), and the highest (120-250-fold) selectivity in favor of glycine site antagonism over non-NMDA receptors. Tetrasubstituted QXs 17d,e were more than 100-fold weaker glycine site antagonists than the corresponding trisubstituted QXs with F being better tolerated than Cl as a substituent at the 8 position. Di- and monosubstituted QXs showed progressively weaker antagonism compared to trisubstituted analogues. For example, removal of the 5-nitro group of 17a results in a ~100-fold decrease in potency (10a,b,z), while removal of both halogens from 17a results in a ~3000-fold decrease in potency (10v). In terms of steady-state inhibition, most QX substitution patterns favor antagonism at NMDA/glycine sites over antagonism at non-NMDA receptors. Among the QXs tested, only 17i was slightly selective for non- NMDA receptors.
19F NMR as an Analytical Tool for Fluorinated Agrochemical Research
Mabury, Scott A.,Crosby, Donald G.
, p. 1845 - 1848 (2007/10/03)
19F NMR was utilized to monitor the photodegradation of trifluralin directly in NMR tubes without extraction, cleanup, concentration, or chromatographic separation.Dissipation curves were generated for the parent pesticide and degradation products, and the major products identified by addition of authentic standarts were α-α-α-trifluoro-2,6-dinitro-N-propyl-p-toluidine (II), α,α,α-trifluoro-2,6-dinitro-p-toluidine (III), and 2-ethyl-7-nitro-5-(trifluoromethyl)benzimidazole (VII).Numerous peaks were observed in the spectra that may represent labile intermediates not generally observed with other analytical techniques.Keywords: 19F NMR; trifluralin; photodegradation
Benzimidazole insecticides
-
, (2008/06/13)
2,6-Di(fluoroalkyl)-4-nitrobenzimidazoles and certain N-acyl derivatives thereof, including sulfonates, thiocarboxamides, and carboxylates, are used to control a broad spectrum of mites and insects with particularly good effect against members of the orde
Control of animal parasites with benzimidazoles
-
, (2008/06/13)
A class of substituted benzimidazoles are useful parasiticides for the systemic control of insects and acarina which feed on living tissues of animals. The compounds, which control both bloodsucking parasites and flesh-eating parasites, are characterized