223463-10-3Relevant articles and documents
Efficient catalytic systems for synthesis of 5,5″-dibromo-2,2′: 6′,2″-terpyridine and 5, 5′-dibromo-2, 2prime;-bipyridine via coupling of dihalogenopyridines with 5-bromo-2-trialkylstannylpyridines
Krompiec,Ignasiak,Krompiec,Stanek,Filapek,Gebarowska,Penczek
experimental part, p. 245 - 262 (2009/10/09)
The results of the studies on the synthesis of 5,5′-dibromo-2, 2′-bipyridine and 5,5″-di-bromo-2,2′:6′,2″- terpyridine via coupling of 5-bromo-2-iodopyridine and 2,6-dihalo-genopyridines with 5-bromo-2-trialkylstannylpyridines mediated by palladium catalysts have been presented. The catalytic activity of the Pd(II) and Pd(0) complexes (e.g. [PdC12(PPh3)2], [PdCl2(COD)], [Pd(dba)2]), and catalytic systems generated in situ from a stable precursor (e.g. [PdC12], [Pd(acac)2]) and an external ligand (APh3, where A = P, As, Sb; phosphines, phosphites) in the coupling of diiodopyridine with 5-bromo-2-tributylstannylpyridine was investigated. The most active system was that generated from [Pd(acac) 2] and P(OPh)3, while the highest coupling selectivity was achieved with [Pd(acac)2] and PPh3. The catalytic activity of systems containing chelating ligands BINAP or dppf was slightly inferior. In all reactions the formation of 5,5′-dibromo-2,2′- bipyridine, the product of homocoupling of 5-bromo-2-tributylstannylpyridine, was observed. An increase of the L/Pd ratio for catalytic system generated from [Pd(acac)2] and P(OPh)3 resulted in improved selectivity of dbtpy formation (the yield of dbbpy, the product of homocoupling, decreased) and in an increased stability of the catalytic system (without decreasing the reaction rate even for Pd/L = 1:32). On the other hand, for the systems containing phosphines the increase of L/Pd above 4:1 for mono- dentate phosphines and above 2:1 for bidentate phosphines resulted in a fast decrease of the reaction rate. The coupling is faster for 2,6-diiodopyridine and slower for 2,6-dibromopyridine, while 2,6-dichIoropyridine is nonreactive. The yield of coupling for trimethyl- and tributylstannyl derivatives is practically identical. Particularly advantageous solvents for the studied coupling reaction are xylene, toluene, and 1,2-diethoxyethane.
5,5″-disubstituted 2,2′:6′,2″-terpyridines through and for metal-mediated cross-coupling chemistry
Lehmann, Uwe,Henze, Oliver,Schlueter, A. Dieter
, p. 854 - 859 (2007/10/03)
The 0.3-5 g scale syntheses of the 2,2′:6′,2″-terpyridines 3, 6, 9, and 10 are described. The pyridine units are connected to one another by Pd-catalyzed cross-coupling reactions. This method allows the easy introduction of halogen, stannyl, and boronic ester functionalities at positions C-5 and C-5″; this results in a novel functionality pattern for terpyridines that considerably widens the applicability of this class of tridentate ligands for supra- and macromolecular applications. The feasibility of growth reactions with these novel terpyridines was demonstrated by the synthesis of compounds 12a-c.