227199-07-7Relevant articles and documents
Highly Potent and Selective Butyrylcholinesterase Inhibitors for Cognitive Improvement and Neuroprotection
Li, Qi,Chen, Ying,Xing, Shuaishuai,Liao, Qinghong,Xiong, Baichen,Wang, Yuanyuan,Lu, Weixuan,He, Siyu,Feng, Feng,Liu, Wenyuan,Chen, Yao,Sun, Haopeng
, p. 6856 - 6876 (2021/05/29)
Butyrylcholinesterase (BChE) has been considered as a potential therapeutic target for Alzheimer's disease (AD) because of its compensation capacity to hydrolyze acetylcholine (ACh) and its close association with Aβ deposit. Here, we identified S06-1011 (hBChE IC50 = 16 nM) and S06-1031 (hBChE IC50 = 25 nM) as highly effective and selective BChE inhibitors, which were proved to be safe and long-acting. Candidate compounds exhibited neuroprotective effects and the ability to improve cognition in scopolamine- and Aβ1-42 peptide-induced cognitive deficit models. The best candidate S06-1011 increased the level of ghrelin, a substrate of BChE, which can function as improving the mental mood appetite. The weight gain of the S06-1011-treated group remarkably increased. Hence, BChE inhibition not only plays a protective role against dementia but also exerts a great effect on treating and nursing care.
Substituted-3H-imidazo[4,5-c]pyridine and 1H-pyrrolo[2,3-c]pyridine series of novel Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1) and Stimulator for Interferon Genes (STING) modulators as cancer immunotherapeutics
-
Paragraph 0194-0195, (2020/02/19)
Substituted -3H-imidazo[4,5-c]pyridine and 1H-pyrrolo[2,3-c]pyridine series of novel Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1) and related compounds, which are useful as inhibitors of ENPP1; synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of using the compounds and compositions to treat disorders associated with dysfunction of the ENPP1.
Substituted-3H-imidazo[4,5-c]pyridine and 1H-pyrrolo[2,3-c]pyridine series of novel Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1) and Stimulator for Interferon Genes (STING) modulators as cancer immunotherapeutics
-
Paragraph 0202-0204, (2019/02/13)
Substituted-3H-imidazo[4,5-c]pyridine and 1H-pyrrolo[2,3-c]pyridine series of novel Ectonucleotide Pyrophosphatase/Phosphodiesterase-1 (ENPP1) and related compounds, which are useful as inhibitors of ENPP1; synthetic methods for making the compounds; pharmaceutical compositions comprising the compounds; and methods of using the compounds and compositions to treat disorders associated with dysfunction of the ENPP1.
Cink4T, a quinazolinone-based dual inhibitor of Cdk4 and tubulin polymerization, identified via ligand-based virtual screening, for efficient anticancer therapy
Sonawane, Vinay,Mohd Siddique, Mohd Usman,Jadav, Surender Singh,Sinha, Barij Nayan,Jayaprakash, Venkatesan,Chaudhuri, Bhabatosh
, p. 115 - 132 (2019/01/23)
Inhibition of cyclin dependent kinase 4 (Cdk4) prevents cancer cells from entering the early G0/G1 phase of the cell division cycle whereas inhibiting tubulin polymerization blocks cancer cells’ ability to undergo mitosis (M) late in the cell cycle. We had reported earlier that two non-planar and relatively non-toxic fascaplysin derivatives, an indole and a tryptoline, inhibit Cdk4 with IC50 values of 6.2 and 10 μM, respectively. Serendipitously, we had also found that they inhibited tubulin polymerization. The molecules were efficacious in mouse tumor models. We have now identified Cink4T in a 59-compound quinazolinone library, designed on the basis of ligand-based virtual screening, as a compound that inhibits Cdk4 and tubulin. Its IC50 value for Cdk4 inhibition is 0.47 μM and >50 μM for inhibition of Cdk1, Cdk2, Cdk6, Cdk9. Cink4T inhibits tubulin polymerization with an IC50 of 0.6 μM. Molecular modelling studies on Cink4T with Cdk4 and tubulin crystal structures lend support to these observations. Cancer cell cycle analyses confirm that Cink4T blocks cells at both G0/G1 and M phases as it should if it were to inhibit both Cdk4 and tubulin polymerization. Our results show, for the very first time, that virtual screening can be used to design novel inhibitors that can potently block two crucial phases of the cell division cycle.
Structure-based design, synthesis, and biological evaluation of isatin derivatives as potential glycosyltransferase inhibitors
Wang, Yong,Chan, Fung-Yi,Sun, Ning,Lui, Hok-Kiu,So, Pui-Kin,Yan, Siu-Cheong,Chan, Kin-Fai,Chiou, Jiachi,Chen, Sheng,Abagyan, Ruben,Leung, Yun-Chung,Wong, Kwok-Yin
, p. 685 - 696 (2015/01/09)
Peptidoglycan glycosyltransferase (PGT) has been shown to be an important pharmacological target for the inhibition of bacterial cell wall biosynthesis. Structure-based virtual screening of about 3 000 000 commercially available compounds against the crystal structure of the glycosyltransferase (GT) domain of the Staphylococcus aureus penicillin-binding protein 2 (S. aureus PBP2) resulted in identification of an isatin derivative, 2-(3-(2-carbamimidoylhydrazono)-2-oxoindolin-1-yl)-N-(m-tolyl)acetamide (4) as a novel potential GT inhibitor. A series of 4 derivatives were synthesized. Several compounds showed more active antimicrobial activity than the initial hit compound 4, in particular 2-(3-(2-carbamimidoylhydrazono)-2-oxoindolin-1-yl)-N-(3-nitrophenyl)acetamide (4l), against Gram-positive Bacillus subtilis and S. aureus with MIC values of 24 and 48 lg/mL, respectively. Saturation transfer difference (STD) NMR study revealed that there is a binding contact between 4l and the GT domain of S. aureus PBP2. Competitive STD-NMR further proved that 4l and moenomycin A bind to GT domain in a competitive manner. Molecular docking study suggests a potential binding pocket of 4l in the GT domain of S. aureus PBP2. Taken together, compound 4l would provide a new scaffold for further development of potent GT inhibitors.
QUINAZOLINONE ANALOGS AND USE OF QUINAZOLINONE ANALOGS FOR TREATING OR PREVENTING CERTAIN VIRAL INFECTIONS
-
Page/Page column 19, (2013/03/26)
Provided is a process for treating or preventing a viral infection in a subject, wherein the viral infection is from a flavivirus selected from the group consisting of Hepatitis C Virus (genotypes 1-7) and Japanese Encephalitis Virus. The process includes administering to the subject a therapeutically effective amount of at least one compound represented by the formula:(Formula (I))
Discovery of novel N -phenylphenoxyacetamide derivatives as EthR inhibitors and ethionamide boosters by combining high-throughput screening and synthesis
Flipo, Marion,Willand, Nicolas,Lecat-Guillet, Nathalie,Hounsou, Candide,Desroses, Matthieu,Leroux, Florence,Lens, Zoé,Villeret, Vincent,Wohlk?nig, Alexandre,Wintjens, René,Christophe, Thierry,Kyoung Jeon, Hee,Locht, Camille,Brodin, Priscille,Baulard, Alain R,Déprez, Benoit
supporting information; experimental part, p. 6391 - 6402 (2012/10/07)
In this paper, we describe the screening of a 14640-compound library using a novel whole mycobacteria phenotypic assay to discover inhibitors of EthR, a transcriptional repressor implicated in the innate resistance of Mycobacterium tuberculosis to the second-line antituberculosis drug ethionamide. From this screening a new chemical family of EthR inhibitors bearing an N-phenylphenoxyacetamide motif was identified. The X-ray structure of the most potent compound crystallized with EthR inspired the synthesis of a 960-member focused library. These compounds were tested in vitro using a rapid thermal shift assay on EthR to accelerate the optimization. The best compounds were synthesized on a larger scale and confirmed as potent ethionamide boosters on M. tuberculosis-infected macrophages. Finally, the cocrystallization of the best optimized analogue with EthR revealed an unexpected reorientation of the ligand in the binding pocket.
N6-[(Hetero)aryl/(cyclo)alkyl-carbamoyl-methoxy-phenyl]-(2-chloro)-5′-N-ethylcarboxamido-adenosines: The first example of adenosine-related structures with potent agonist activity at the human A2B adenosine receptor
Baraldi, Pier Giovanni,Preti, Delia,Tabrizi, Mojgan Aghazadeh,Fruttarolo, Francesca,Saponaro, Giulia,Baraldi, Stefania,Romagnoli, Romeo,Moorman, Allan R.,Gessi, Stefania,Varani, Katia,Borea, Pier Andrea
, p. 2514 - 2527 (2007/10/03)
A new series of N6-[(hetero)aryl/(cyclo)alkyl-carbamoyl-methoxy-phenyl]-(2-chloro)-5′-N-ethylcarboxamido-adenosines (24-43) has been synthesised and tested in binding assays at hA1, hA2A and hA3 adenosine receptors, and in a functional assay at the hA2B subtype. The examined compounds displayed high potency in activating A2B receptors with good selectivity versus A2A subtypes. The introduction of an unsubstituted 4-[(phenylcarbamoyl)-methoxy]-phenyl chain at the N6 position of 5′-N-ethylcarboxamido-adenosine led us to the recognition of compound 24 as a full agonist displaying the highest efficacy of the series (EC50 hA2B = 7.3 nM). These compounds represent the first report about adenosine-related structures capable of activating hA2B subtype in the low nanomolar range.
Evaluation of glycolamide esters of indomethacin as potential cyclooxygenase-2 (COX-2) inhibitors
Khanna, Smriti,Madan, Manjula,Vangoori, Akhila,Banerjee, Rahul,Thaimattam, Ram,Jafar Sadik Basha,Ramesh, Mullangi,Casturi, Seshagiri Rao,Pal, Manojit
, p. 4820 - 4833 (2007/10/03)
A number of novel indomethacin glycolamide esters were synthesized and tested for their cyclooxygenase (COX-1 and COX-2) inhibition properties in vitro. Many of these compounds proved to be selective COX-2 inhibitors, and subtle structural changes in the substituents on the glycolamide ester moiety altered the inhibitory properties as well as potencies significantly. Their in vitro data were rationalized through molecular modeling studies. Few of them displayed anti-inflammatory activity in vivo. Compound 32, [1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl]acetic acid 2-morpholin-4-yl-2-oxo ethyl ester, was identified as a promising compound in this class and its good anti-inflammatory activity was demonstrated in the in vivo model.
Acetamides and benzamides that are useful in treating sexual dysfunction
-
, (2008/06/13)
The present invention relates to the use of compounds of formula (I) for the treatment of sexual dysfunction and to compositions containing compounds of formula (I) for the treatment of sexual dysfunction.