Welcome to LookChem.com Sign In|Join Free

CAS

  • or

22767-77-7

Post Buying Request

22767-77-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

22767-77-7 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 22767-77-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,2,7,6 and 7 respectively; the second part has 2 digits, 7 and 7 respectively.
Calculate Digit Verification of CAS Registry Number 22767-77:
(7*2)+(6*2)+(5*7)+(4*6)+(3*7)+(2*7)+(1*7)=127
127 % 10 = 7
So 22767-77-7 is a valid CAS Registry Number.

22767-77-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 1-propenyl-naphthalene

1.2 Other means of identification

Product number -
Other names Naphthalene, 1-(1-propenyl)-

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:22767-77-7 SDS

22767-77-7Relevant articles and documents

A facile and convenient sequential homobimetallic catalytic approach towards β-methylstyrenes. A one-pot Stille cross-coupling/isomerization strategy

Simonetti, Sebastian O.,Larghi, Enrique L.,Kaufman, Teodoro S.

, p. 3735 - 3743 (2014/06/09)

An efficient one-pot synthetic approach towards β-methylstyrenes is reported. The transformation, based on sequential homobimetallic catalysis, involves a Stille cross-coupling reaction between aryl halides and allyltributylstannane, followed by an in situ palladium-catalyzed conjugative isomerization. The reaction was optimized, and the best results were obtained with 10 mol% Pd(PPh3)2Cl2, 8.0 equiv. LiCl, and 0.5 equiv. PPh3 in diglyme at 130 °C for 12 h. It was demonstrated that the reaction tolerates a wide variety of functional groups. This journal is the Partner Organisations 2014.

Wittig reaction: Role of steric effects in explaining the prevalent formation of Z olefin from nonstabilized ylides

Baccolini, Graziano,Delpivo, Camilla,Micheletti, Gabriele

, p. 1291 - 1302 (2012/11/13)

For understanding the mechanism involved in the Wittig reaction, it is important to know the factors which influence the stability of 1,2-oxaphosphetane intermediates with pentacoordinate phosphorus; in these intermediates, the steric factor plays a predominant role. Studying the Wittig reaction between nonstabilized ylides and different aldehydes, we noted that the stereochemical outcome driving toward Z-olefin formation was influenced only by different steric factors. The proposed mechanism differs from those previously reported because it underlines the fundamental role of the two cis/trans oxaphosphetane intermediates with the oxygen atom in equatorial position.

Trimethyl phosphite as a trap for alkoxy radicals formed from the ring opening of oxiranylcarbinyl radicals. Conversion to alkenes. Mechanistic applications to the study of C-C versus C-O ring cleavage

Ding, Bangwei,Bentrude, Wesley G.

, p. 3248 - 3259 (2007/10/03)

Trimethyl phosphite, (MeO)3P, is introduced as an efficient and selective trap in oxiranylcarbinyl radical (2) systems, formed from haloepoxides 8-13 under thermal AIBN/n-Bu3SnH conditions at about 80 °C. Initially, the transformations of 8-13, in the absence of phosphite, to allyl alcohol 7 and/or vinyl ether 5 were measured quantitatively (Table 1). Structural variations in the intermediate oxiranylcarbinyl (2), allyloxy (3), and vinyloxycarbinyl (4) radicals involve influences of the thermodynamics and kinetics of the C-O (2 → 3, k1) and C-C (2 → 4, k2) radical scission processes and readily account for the changes in the amounts of product vinyl ether (5) and allyl alcohol (7) formed. Added (MeO)3P is inert to vinyloxycarbinyl radical 4 and selectively and rapidly traps allyloxy radical 3, diverting it to trimethyl phosphate and allyl radical 6. Allyl radicals (6) dimerize or are trapped by n-Bu3SnH to give alkenes, formed from haloepoxides 8, 9, and 13 in 69-95% yields. Intermediate vinyloxycarbinyl radicals (4), in the presence or absence of (MeO)3P, are trapped by n-Bu3SnH to give vinyl ethers (5). The concentrations of (MeO)3P and n-Bu3SnH were varied independently, and the amounts of phosphate, vinyl ether (5), and/or alkene from haloepoxides 10, 11, and 13 were carefully monitored. The results reflect readily understood influences of changes in the structures of radicals 2-4, particularly as they influence the C-O (k1) and C-C (k2) cleavages of intermediate oxiranylcarbinyl radical 2 and their reverse (k-1, k-2). Diversion by (MeO)3P of allyloxy radicals (3) from haloepoxides 11 and 12 fulfills a prior prediction that under conditions closer to kinetic control, products of C-O scission, not just those of C-C scission, may result. Thus, for oxiranylcarbinyl radicals from haloepoxides 11, 12, and 13, C-O scission (k1, 2 → 3) competes readily with C-C cleavage (k2, 2 → 4), even though C-C scission is favored thermodynamically.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 22767-77-7