Welcome to LookChem.com Sign In|Join Free

CAS

  • or

29623-28-7

Post Buying Request

29623-28-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

29623-28-7 Usage

Uses

13(S)-HODE is an inhibitor of tumor cell adhesion in endothelium tissue. 13(S)-HODE is also used to activate GPR132 which may affect autoimmune function and lymph organ size.

Definition

ChEBI: An HODE (hydroxyoctadecadienoic acid) in which the double bonds are at positions 9 and 11 (E and Z geometry, respectively) and the hydroxy group is at position 13 (with S-configuration).

Check Digit Verification of cas no

The CAS Registry Mumber 29623-28-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,9,6,2 and 3 respectively; the second part has 2 digits, 2 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 29623-28:
(7*2)+(6*9)+(5*6)+(4*2)+(3*3)+(2*2)+(1*8)=127
127 % 10 = 7
So 29623-28-7 is a valid CAS Registry Number.
InChI:InChI=1/C18H32O3/c1-2-3-11-14-17(19)15-12-9-7-5-4-6-8-10-13-16-18(20)21/h7,9,12,15,17,19H,2-6,8,10-11,13-14,16H2,1H3,(H,20,21)/b9-7-,15-12+/t17-/m0/s1

29623-28-7 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma

  • (H9146)  13(S)-Hydroxyoctadeca-9Z,11E-dienoic acid  90-100 μg/mL in ethanol, ≥98%

  • 29623-28-7

  • H9146-10UG

  • 1,450.80CNY

  • Detail
  • Sigma

  • (H9146)  13(S)-Hydroxyoctadeca-9Z,11E-dienoic acid  90-100 μg/mL in ethanol, ≥98%

  • 29623-28-7

  • H9146-25UG

  • 2,988.18CNY

  • Detail

29623-28-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name 13(S)-HODE

1.2 Other means of identification

Product number -
Other names 13(S)-HYDROXYOCTADECA-9Z,11E-DIENOIC ACID

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:29623-28-7 SDS

29623-28-7Relevant articles and documents

Characterization of Bitter-Tasting Oxylipins in Poppy Seeds (Papaver somniferum L.)

Lainer, Johanna,Dawid, Corinna,Dunkel, Andreas,Glaser, Peter,Wittl, Stephanie,Hofmann, Thomas

, p. 10361 - 10373 (2020/01/31)

Activity-guided fractionation of poppy seed (Papaver somniferum L.) extracts and analysis of fatty acid oxidation model experiments, followed by liquid chromatography time-of-flight mass spectrometry, tandem mass spectrometry, and one-/two-dimensional nuclear magnetic resonance experiments, revealed the chemical structures of five bitter-tasting fatty acids (1-5), three monoglycerides (6-8), six C18-lipidoxidation products (9-14), and four lipid oxidation degradation products (15 and 17-19) as well as two previously unreported monoglyceride oxidation degradation products, namely, 9-(2′,3′-dihydroxypropyloxy)-9-oxononaic acid (1-azeloyl-rac-glycerol, 16) and 1-(2′,3′-dihydroxypropyl)-8-(5″-oxo-2″,5″-dihydrofruan-2″-yl)-octonoate (1-ODFO-rac-glycerol, 20). Sensory studies exhibited low bitter taste threshold concentrations between 0.08 and 0.29 mmol/L, particularly for the higher oxidated C18-fatty acids trihydroxyoctadecenoic acid (THOE, 12), 12,13-dihydroxy-9-oxo-10-octadecenoic acid (12,13-diOH-9-oxo, 13), and 9,10-dihydroxy-13-oxo-11-octadecenoic acid (9,10-diOH-13-oxo, 14) as well as for the lipidoxidation degradation products 4-hydroxy-2-noneic acid (4-HNA, 17), 4-hydroxy-2-docecendienoic acid (HDdiA, 18), and 8-(5′-oxo-2′,5′-dihydrofuran-2′-yl)-octanoic acid (ODFO, 20).

Oxygenation reactions catalyzed by the F557V mutant of soybean lipoxygenase-1: Evidence for two orientations of substrate binding

Hershelman, Dillon,Kahler, Kirsten M.,Price, Morgan J.,Lu, Iris,Fu,Plumeri, Patricia A.,Karaisz, Fred,Bassett, Natasha F.,Findeis, Peter M.,Clapp, Charles H.

, (2019/09/10)

Plant lipoxygenases oxygenate linoleic acid to produce 13(S)-hydroperoxy-9Z,11E-octadecadienoic acid (13(S)-HPOD) or 9-hydroperoxy-10E,12Z-octadecadienoic acid (9(S)-HPOD). The manner in which these enzymes bind substrates and the mechanisms by which they control regiospecificity are uncertain. Hornung et al. (Proc. Natl. Acad. Sci. USA 96 (1999) 4192–4197) have identified an important residue, corresponding to phe-557 in soybean lipoxygenase-1 (SBLO-1). These authors proposed that large residues in this position favored binding of linoleate with the carboxylate group near the surface of the enzyme (tail-first binding), resulting in formation of 13(S)-HPOD. They also proposed that smaller residues in this position facilitate binding of linoleate in a head-first manner with its carboxylate group interacting with a conserved arginine residue (arg-707 in SBLO-1), which leads to 9(S)-HPOD. In the present work, we have tested these proposals on SBLO-1. The F557V mutant produced 33% 9-HPOD (S:R = 87:13) from linoleic acid at pH 7.5, compared with 8% for the wild-type enzyme and 12% with the F557V,R707L double mutant. Experiments with 11(S)-deuteriolinoleic acid indicated that the 9(S)-HPOD produced by the F557V mutant involves removal of hydrogen from the pro-R position on C-11 of linoleic acid, as expected if 9(S)-HPOD results from binding in an orientation that is inverted relative to that leading to 13(S)-HPOD. The product distributions obtained by oxygenation of 10Z,13Z-nonadecadienoic acid and arachidonic acid by the F557V mutant support the hypothesis that ω6 oxygenation results from tail-first binding and ω10 oxygenation from head-first binding. The results demonstrate that the regiospecificity of SBLO-1 can be altered by a mutation that facilitates an alternative mode of substrate binding and adds to the body of evidence that 13(S)-HPOD arises from tail-first binding.

Allene Oxide Synthase Pathway in Cereal Roots: Detection of Novel Oxylipin Graminoxins

Grechkin, Alexander N.,Ogorodnikova, Anna V.,Egorova, Alevtina M.,Mukhitova, Fakhima K.,Ilyina, Tatiana M.,Khairutdinov, Bulat I.

, p. 336 - 343 (2018/06/04)

Young roots of wheat, barley, and sorghum, as well as methyl jasmonate pretreated rice seedlings, undergo an unprecedented allene oxide synthase pathway targeted to previously unknown oxylipins 1–3. These Favorskii-type products, (4Z)-2-pentyl-4-tridecene-1,13-dioic acid (1), (2′Z)-2-(2′-octenyl)-decane-1,10-dioic acid (2), and (2′Z,5′Z)-2-(2′,5′-octadienyl)-decane-1,10-dioic acid (3), have a carboxy function at the side chain, as revealed by their MS and NMR spectral data. Compounds 1–3 were the major oxylipins detected, along with the related α-ketols. Products 1–3 were biosynthesized from (9Z,11E,13S)-13-hydroperoxy-9,11-octadecadienoic acid, (9S,10E,12Z)-9-hydroperoxy-10,12-octadecadienoic acid (9-HPOD), and (9S,10E,12Z,15Z)-9-hydroperoxy-10,12,15-octadecatrienoic acid, respectively, via the corresponding allene oxides and cyclopropanones. The data indicate that conversion of the allene oxide into the cyclopropanone is controlled by soluble cyclase. The short-lived cyclopropanones are hydrolyzed to products 1–3. The collective name “graminoxins” has been ascribed to oxylipins 1–3.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 29623-28-7