Welcome to LookChem.com Sign In|Join Free

CAS

  • or

29679-58-1

Post Buying Request

29679-58-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

29679-58-1 Usage

Uses

Fenoprofen is a positive allosteric modulators at melanocortin receptor 3 for treatment of inflammatory diseases in human and mouse model.

Check Digit Verification of cas no

The CAS Registry Mumber 29679-58-1 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 2,9,6,7 and 9 respectively; the second part has 2 digits, 5 and 8 respectively.
Calculate Digit Verification of CAS Registry Number 29679-58:
(7*2)+(6*9)+(5*6)+(4*7)+(3*9)+(2*5)+(1*8)=171
171 % 10 = 1
So 29679-58-1 is a valid CAS Registry Number.
InChI:InChI=1/C15H14O3/c1-11(15(16)17)12-6-5-9-14(10-12)18-13-7-3-2-4-8-13/h2-11H,1H3,(H,16,17)

29679-58-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name α-methyl-3-phenoxybenzeneacetic acid

1.2 Other means of identification

Product number -
Other names 3-(4-PHENOXYPHENYL)PROPIONIC ACID

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:29679-58-1 SDS

29679-58-1Relevant articles and documents

Visible-light photoredox-catalyzed selective carboxylation of C(sp3)?F bonds with CO2

Bo, Zhi-Yu,Chen, Lin,Gao, Tian-Yu,Jing, Ke,Lan, Yu,Liu, Shi-Han,Luo, Shu-Ping,Yan, Si-Shun,Yu, Bo,Yu, Da-Gang

supporting information, p. 3099 - 3113 (2021/11/16)

It is highly attractive and challenging to utilize carbon dioxide (CO2), because of its inertness, as a nontoxic and sustainable C1 source in the synthesis of valuable compounds. Here, we report a novel selective carboxylation of C(sp3)?F bonds with CO2 via visible-light photoredox catalysis. A variety of mono-, di-, and trifluoroalkylarenes as well as α,α-difluorocarboxylic esters and amides undergo such reactions to give important aryl acetic acids and α-fluorocarboxylic acids, including several drugs and analogs, under mild conditions. Notably, mechanistic studies and DFT calculations demonstrate the dual role of CO2 as an electron carrier and electrophile during this transformation. The fluorinated substrates would undergo single-electron reduction by electron-rich CO2 radical anions, which are generated in situ from CO2 via sequential hydride-transfer reduction and hydrogen-atom-transfer processes. We anticipate our finding to be a starting point for more challenging CO2 utilization with inert substrates, including lignin and other biomass.

Synthesis of pharmaceutical drugs from cardanol derived from cashew nut shell liquid

Shi, Yiping,Kamer, Paul C. J.,Cole-Hamilton, David J.

supporting information, p. 1043 - 1053 (2019/03/12)

Cardanol from cashew nut shell liquid extracted from cashew nut shells was successfully converted into various useful pharmaceutical drugs, such as norfenefrine, rac-phenylephrine, etilefrine and fenoprofene. 3-Vinylphenol, the key intermediate for the synthesis of these drugs, was synthesised from cardanol by ethenolysis to 3-non-8-enylphenol followed by isomerising ethenolysis. The metathesis reaction worked very well using DCM, but the greener solvent, 2-methyl tetrahydrofuran, also gave very similar results. Hydroxyamination of 3-vinylphenol with an iron porphyrin catalyst afforded norfenefrine in over 70% yield. Methylation and ethylation of norfenefrine afforded rac-phenylephrine and etilefrine respectively. A sequence of C-O coupling, isomerising metathesis and selective methoxycarbonylation afforded fenoprofene in good yield. A comparison of the routes described in this paper with some standard literature syntheses of 3-vinylphenol and of the drug molecules shows significant environmental advantages in terms of precursors, yields, number of steps, conditions and the use of catalysts. The Atom Economy of our processes is generally similar or significantly superior to those of the literature processes mainly because the side products produced during synthesis of 3-vinylphenol (1-octeme, 1,4-cyclohexadiene and propene) are easily separable and of commercial value, especially as they are bio-derived. The E Factor for the production of 2-vinylphenol by our process is also very low compared with those of previously reported syntheses.

Photocarboxylation of Benzylic C-H Bonds

Meng, Qing-Yuan,Schirmer, Tobias E.,Berger, Anna Lucia,Donabauer, Karsten,K?nig, Burkhard

, p. 11393 - 11397 (2019/08/20)

The carboxylation of sp3-hybridized C-H bonds with CO2 is a challenging transformation. Herein, we report a visible-light-mediated carboxylation of benzylic C-H bonds with CO2 into 2-arylpropionic acids under metal-free conditions. Photo-oxidized triisopropylsilanethiol was used as the hydrogen atom transfer catalyst to afford a benzylic radical that accepts an electron from the reduced form of 2,3,4,6-tetra(9H-carbazol-9-yl)-5-(1-phenylethyl)benzonitrile generated in situ. The resulting benzylic carbanion reacts with CO2 to generate the corresponding carboxylic acid after protonation. The reaction proceeded without the addition of any sacrificial electron donor, electron acceptor or stoichiometric additives. Moderate to good yields of the desired products were obtained in a broad substrate scope. Several drugs were successfully synthesized using the novel strategy.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 29679-58-1