29927-08-0Relevant articles and documents
Novel Triapine Derivative Induces Copper-Dependent Cell Death in Hematopoietic Cancers
Chen, Ge,Niu, Chunyi,Yi, Jianhua,Sun, Lin,Cao, Hengyi,Fang, Yanjia,Jin, Taijie,Li, Ying,Lou, Chunli,Kang, Jingwu,Wei, Wanguo,Zhu, Jidong
, (2019/04/01)
Triapine, an iron chelator that inhibits ribonucleotide reductase, has been evaluated in clinical trials for cancer treatment. Triapine in combination with other chemotherapeutic agents shows promising efficacy in certain hematologic malignancies; however, it is less effective against many advanced solid tumors, probably due to the unsatisfactory potency and pharmacokinetic properties. In this report, we developed a triapine derivative IC25 (10) with potent antitumor activity. 10 Preferentially inhibited the proliferation of hematopoietic cancers by inducing mitochondria reactive oxygen species production and mitochondrial dysfunction. Unlike triapine, 10 executed cytotoxic action in a copper-dependent manner. 10-Induced up-expression of thioredoxin-interacting protein resulted in decreased thioredoxin activity to permit c-Jun N-terminal kinase and p38 activation and ultimately led to the execution of the cell death program. Remarkedly, 10 showed good bioavailability and inhibited tumor growth in mouse xenograft models. Taken together, our study identifies compound 10 as a copper-dependent antitumor agent, which may be applied to the treatment of hematopoietic cancers.
Novel Triapine Derivative Induces Copper-Dependent Cell Death in Hematopoietic Cancers
Chen, Ge,Niu, Chunyi,Yi, Jianhua,Sun, Lin,Cao, Hengyi,Fang, Yanjia,Jin, Taijie,Li, Ying,Lou, Chunli,Kang, Jingwu,Wei, Wanguo,Zhu, Jidong
, p. 3107 - 3121 (2019/04/01)
Triapine, an iron chelator that inhibits ribonucleotide reductase, has been evaluated in clinical trials for cancer treatment. Triapine in combination with other chemotherapeutic agents shows promising efficacy in certain hematologic malignancies; however, it is less effective against many advanced solid tumors, probably due to the unsatisfactory potency and pharmacokinetic properties. In this report, we developed a triapine derivative IC25 (10) with potent antitumor activity. 10 Preferentially inhibited the proliferation of hematopoietic cancers by inducing mitochondria reactive oxygen species production and mitochondrial dysfunction. Unlike triapine, 10 executed cytotoxic action in a copper-dependent manner. 10-Induced up-expression of thioredoxin-interacting protein resulted in decreased thioredoxin activity to permit c-Jun N-terminal kinase and p38 activation and ultimately led to the execution of the cell death program. Remarkedly, 10 showed good bioavailability and inhibited tumor growth in mouse xenograft models. Taken together, our study identifies compound 10 as a copper-dependent antitumor agent, which may be applied to the treatment of hematopoietic cancers.
Synthesis and biological activities of new 1,4-benzothiazine derivatives
Kajino,Mizuno,Tawada,Shibouta,Nishikawa,Meguro
, p. 2888 - 2895 (2007/10/02)
New 2H-1,4-benzothiazin-3(4H)-one derivatives possessing (4-phenyl-1-piperazinyl)alkyl moieties at the 2-position were synthesized and tested for calcium antagonistic and calmodulin antagonistic activities. Antihypertensive effects in spontaneously hypertensive rats were also evaluated. In general, these compounds were rather weak calcium channel blockers, although, in contrast, many of them had moderate to potent calmodulin antagonistic activity, and 2-[3-(4-(4-fluorophenyl)-1-piperazinyl]propyl]-2H-1,4-benzothiazin-3(4H )-one derivatives 45, 74 and 75 showed potent antihypertensive effects.