344337-39-9Relevant articles and documents
C-H Alkylation of Aldehydes by Merging TBADT Hydrogen Atom Transfer with Nickel Catalysis
Murugesan, Vetrivelan,Ganguly, Anirban,Karthika, Ardra,Rasappan, Ramesh
, p. 5389 - 5393 (2021)
Catalyst controlled site-selective C-H functionalization is a challenging but powerful tool in organic synthesis. Polarity-matched and sterically controlled hydrogen atom transfer (HAT) provides an excellent opportunity for site-selective functionalization. As such, the dual Ni/photoredox system was successfully employed to generate acyl radicals from aldehydes via selective formyl C-H activation and subsequently cross-coupled to generate ketones, a ubiquitous structural motif present in the vast majority of natural and bioactive molecules. However, only a handful of examples that are constrained to the use of aryl halides are developed. Given the wide availability of amines, we developed a cross-coupling reaction via C-N bond cleavage using the economic nickel and TBADT catalyst for the first time. A range of alkyl and aryl aldehydes were cross-coupled with benzylic and allylic pyridinium salts to afford ketones with a broad spectrum of functional group tolerance. High regioselectivity toward formyl C-H bonds even in the presence of α-methylene carbonyl or α-amino/oxy methylene was obtained.
NOVEL DIHYDROPYRIMIDIN-2(1H)-ONE COMPOUNDS AS S-NITROSOGLUTATHIONE REDUCTASE INHIBITORS
-
Page/Page column 142, (2011/04/24)
The present invention is directed to novel dihydropyrimidin-2(1H)-one compounds useful as S-nitrosoglutathione reductase (GSNOR) inhibitors, pharmaceutical compositions comprising such compounds, and methods of making and using the same.