383863-82-9Relevant articles and documents
A theoretical DFT-based and experimental study of the transmetalation step in Au/Pd-mediated cross-coupling reactions
Hansmann, Max M.,Pernpointner, Markus,Doepp, Rene,Hashmi, A. Stephen K.
, p. 15290 - 15303 (2013/11/06)
In this work a combined theoretical and experimental investigation of the cross-coupling reaction involving two metallic reaction centers, namely gold and palladium, is described. One metal center (Au) hereby is rather inert towards change in its oxidation state, whereas Pd undergoes oxidative insertion and reductive elimination steps. Detailed mechanistic and energetic studies of each individual step, with the focus on the key transmetalation step are presented and compared for different substrates and ligands on the catalytic Pd center. Different aryl halides (Cl, Br, I) and aryl triflates were investigated. Hereby the nature of the counteranion X turned out to be crucial. In the case of X=Cl and L=PMe3 the oxidative addition is rate-determining, whereas in the case of X=I the transmetalation step becomes rate-determining in the Au/Pd-cross-coupling mechanism. A variety of Au-Pd transmetalation reaction scenarios are discussed in detail, favoring a transition state with short intermetallic Au-Pd contacts. Furthermore, without a halide counteranion the transmetalation from gold(I) to palladium(II) is highly endothermic, which confirms our experimental findings that the coupling does not occur with aryl triflates and similar weakly coordinating counteranions - a conclusion that is essential in designing new Au-Pd catalytic cycles. In combination with experimental work, this corrects a previous report in the literature claiming a successful coupling potentially catalytic in both metals with weakly coordinating counteranions. A helping hand: For the transmetalation from gold(I) to palladium(II), halide ions play a crucial role (see scheme). Without the formation of a strong gold(I)-halogen bond (e.g., with sulfonate), the transmetalation does not proceed.
Gold(I) organosulfinate and organosulfonate complexes
Roembke,Schier,Schmidbaur
, p. 2482 - 2486 (2007/10/03)
(Phosphine)gold(I) organosulfonates and organosulfinates (R3P)Au-OS(O)2R′ (A) and (R3P)Au-S(O)2R′ (B), respectively, are active catalysts for the addition of alcohols to alkynes. A series of compounds of type A (R = Ph and Me, R′ = p-Tol; R = Ph, R′ = p-Py; R = Ph and Me, R′ = Et) and type B (R = Ph, R′ = p-Tol; R = Ph and Me, R′ = Me) were prepared and characterized by analytical and spectroscopic data. The crystal structure of [p-TolS(O)2O-Au(PPh3)]·CH2Cl 2 was determined by single crystal X-ray diffraction. The molecules are aggregated into pairs with O-bonded gold atoms and short Au ··· Au contacts [3.1770(3) A]. By contrast, crystals of p-TolS(O)O-Au(PPh3) contain intimately aggregated ion pairs of the homoleptic components [(Ph3P)2Au]+[{p-TolS(O)2} 2Au]- with a short Au ··· Au contact [2.9249(2) A] and a strongly bent P-Au-P axis [156.66(4)o]. The sulfinate ligands are both S-bonded to the gold atom. Analogous p-tolylsulfinate complexes were also prepared with the isocyanide ligands tBuNC and 2,6-Me2C6H3NC. Their spectroscopic data indicate ionic solid state structures with homoleptic cations and anions.