Welcome to LookChem.com Sign In|Join Free

CAS

  • or

39627-84-4

Post Buying Request

39627-84-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

39627-84-4 Usage

General Description

2-Naphthhydrazide, also known as 2-naphthoyl hydrazide or 2-naphthalene carbohydrazide, is a chemical compound with the molecular formula C11H10N2O. It consists of a naphthyl moiety, featuring two fused benzene rings, linked to a hydrazide group. This aromatic compound is primarily used in scientific research as a precursor in the synthesis of different chemical substances. Due to its reactivity, it is predominantly found within laboratory settings and is not typically encountered in daily life. Detailed information regarding its toxicity or environmental impact is not readily available, but as with all chemicals, careful handling and proper protective measures should be employed during its use.

Check Digit Verification of cas no

The CAS Registry Mumber 39627-84-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 3,9,6,2 and 7 respectively; the second part has 2 digits, 8 and 4 respectively.
Calculate Digit Verification of CAS Registry Number 39627-84:
(7*3)+(6*9)+(5*6)+(4*2)+(3*7)+(2*8)+(1*4)=154
154 % 10 = 4
So 39627-84-4 is a valid CAS Registry Number.
InChI:InChI=1/C11H10N2O/c12-13-11(14)10-6-5-8-3-1-2-4-9(8)7-10/h1-7H,12H2,(H,13,14)

39627-84-4 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Alfa Aesar

  • (L08038)  2-Naphthoic hydrazide, 98%   

  • 39627-84-4

  • 1g

  • 399.0CNY

  • Detail
  • Alfa Aesar

  • (L08038)  2-Naphthoic hydrazide, 98%   

  • 39627-84-4

  • 5g

  • 1519.0CNY

  • Detail

39627-84-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name 2-NAPHTHHYDRAZIDE

1.2 Other means of identification

Product number -
Other names naphthalene-2-carbohydrazide

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:39627-84-4 SDS

39627-84-4Relevant articles and documents

Structure-based design and biological profile of (E)-N-(4-Nitrobenzylidene) -2-naphthohydrazide, a novel small molecule inhibitor of IκB kinase-β

Avila, Carolina M.,Lopes, Alexandra B.,Gonalves, Arlan S.,Da Silva, Leandro L.,Romeiro, Nelilma C.,Miranda, Ana Luisa P.,Sant'Anna, Carlos M.R.,Barreiro, Eliezer J.,Fraga, Carlos A.M.

, p. 1245 - 1253 (2011)

In this study, we describe the rational design, molecular modeling and pharmacological profile of a novel IKK-β inhibitor (E)-N-(4- nitrobenzylidene)-2-naphthohydrazide (LASSBio-1524). The design based on the IKK-β active site, and a privileged structure template yielded a novel IKK-β inhibitor scaffold with significant selectivity over IKK-α and CHK2, as assessed by an in vitro kinase assay. For a better understanding of the structural requirements of IKK-β inhibition, molecular dynamics simulations of LASSBio-1524 (3) were performed. The NAH derivative LASSBio-1524 (3), was able to suppress arachidonic acid-induced edema formation in a dose-dependent manner, demonstrating an in vivo anti-inflammatory effect. The molecular architecture of this novel, low-molecular weight IKK-β inhibitor is encouraging for further lead optimization toward the development of innovative anti-inflammatory drug candidates.

Crystallographic Elucidation of Stimuli-Controlled Molecular Rotation for a Reversible Sol-Gel Transformation

Khan, Mehebub Ali,Ghosh, Soumen,Bera, Sachinath,Hoque, Anamika,Sk, Ismail,Ansari, Shagufi Naz,Mobin, Shaikh M.,Alam, Md. Akhtarul

, p. 4019 - 4025 (2020)

To get an idea about the most probable microporous supramolecular environment in the gel state, gelator molecule 1 has been crystallized from its gelling solvent (dimethylformamide). Crystal structure analysis of 1 shows a strong ?···πstacking interaction between the electron-deficient pentafluorophenyl ring and electron-rich naphthyl ring. The gelling solvent situated in the "molecular pocket" stitches the gelators through weak H-bonding interactions to facilitate the formation of an organogel. Scanning electron microscopy analysis exhibits a ribbonlike fibrous morphology that resembles the supramolecular arrangement of 1 in its crystalline state, as evidenced by powder X-ray diffraction. In the presence of external stimuli (tetrabutylammonium fluoride), the organogel of 1 disassembles into sol. This sol-gel transformation phenomenon has been explained on the basis of X-ray single-crystal analysis. Single crystals obtained from the sol state show that naphthylic-OH of 1 gets deprotonated, resulting in C-C bond rotation that plays a major role in the sol-gel transformation. Gelator 1 exhibits weak green fluorescence in the gel state, whereas it shows highly intense yellow fluorescence in the sol state. Furthermore, a reversible sol-gel transformation associated with changes in the spectroscopic properties has been observed in the presence of acids and fluoride ions, respectively.

4-Alkyl-1,2,4-triazole-3-thione analogues as metallo-β-lactamase inhibitors

Gavara, Laurent,Legru, Alice,Verdirosa, Federica,Sevaille, Laurent,Nauton, Lionel,Corsica, Giuseppina,Mercuri, Paola Sandra,Sannio, Filomena,Feller, Georges,Coulon, Rémi,De Luca, Filomena,Cerboni, Giulia,Tanfoni, Silvia,Chelini, Giulia,Galleni, Moreno,Docquier, Jean-Denis,Hernandez, Jean-Fran?ois

supporting information, (2021/06/15)

In Gram-negative bacteria, the major mechanism of resistance to β-lactam antibiotics is the production of one or several β-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-β-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the μM to sub-μM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.

4-Amino-1,2,4-triazole-3-thione-derived Schiff bases as metallo-β-lactamase inhibitors

Baud, Damien,Bebrone, Carine,Becker, Katja,Benvenuti, Manuela,Cerboni, Giulia,Chelini, Giulia,Cutolo, Giuliano,De Luca, Filomena,Docquier, Jean-Denis,Feller, Georges,Fischer, Marina,Galleni, Moreno,Gavara, Laurent,Gresh, Nohad,Kwapien, Karolina,Legru, Alice,Mangani, Stefano,Mercuri, Paola,Pozzi, Cecilia,Sannio, Filomena,Sevaille, Laurent,Tanfoni, Silvia,Verdirosa, Federica,Berthomieu, Dorothée,Bestgen, Beno?t,Frère, Jean-Marie,Hernandez, Jean-Fran?ois

supporting information, (2020/09/16)

Resistance to β-lactam antibiotics in Gram-negatives producing metallo-β-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clinically useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the μM to sub-μM range. Several were broad-spectrum inhibitors, also inhibiting the most clinically relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-phenyl at position 4. The crystallographic structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear centre and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiological analysis suggested that the potentiation activity of the compounds was limited by poor outer membrane penetration or efflux. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clinical strain toward several β-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 39627-84-4