400629-06-3Relevant articles and documents
Ligand-Promoted Palladium-Catalyzed C?H Acetoxylation of Simple Arenes
Valderas, Carolina,Naksomboon, Kananat,Fernández-Ibá?ez, M. ángeles
, p. 3213 - 3217 (2016/10/24)
The palladium-catalyzed C?H oxidation of simple arenes is an attractive strategy to obtain phenols, which have many applications in the fine chemicals industry. Although some advances have been made in this research area, low reactivity and selectivity are, in general, observed. This report describes a new catalytic system for the efficient C?H acetoxylation of simple arenes based on Pd(OAc)2 and a pyridinecarboxylic acid ligand.
Steric control of site selectivity in the Pd-catalyzed C-H acetoxylation of simple arenes
Cook, Amanda K.,Emmert, Marion H.,Sanford, Melanie S.
supporting information, p. 5428 - 5431 (2013/11/19)
This report describes the use of an oxidant and a ligand to control site selectivity in the Pd(OAc)2-catalyzed C-H acetoxylation of simple arenes. The use of MesI(OAc)2 as the terminal oxidant in combination with acridine as the ligand results in primarily sterically controlled selectivity. In contrast, with Pd(OAc)2 as the catalyst and PhI(OAc)2 as the oxidant, electronic effects dominate the selectivity of arene C-H acetoxylation.
NOVEL PHENOL DERIVATIVE
-
Page/Page column 29, (2012/07/28)
Disclosed are a novel compound and a pharmaceutical product, each having a remarkable uricosuric effect. Specifically disclosed are: a novel phenol derivative represented by general formula (1) that is shown in FIG. 1; a pharmaceutically acceptable salt t
Remarkably high reactivity of Pd(OAc)2/pyridine catalysts: Nondirected C-H oxygenation of arenes
Emmert, Marion H.,Cook, Amanda K.,Xie, Yushu J.,Sanford, Melanie S.
supporting information; experimental part, p. 9409 - 9412 (2011/11/07)
Less is more: The rational optimization and general applicability of the catalytic system Pd(OAc)2/pyridine is described (see scheme). The catalyst shows excellent reactivity in the C-H oxygenation of simple aromatic substrates. The Pd/pyridine ratio is critical as the use of one equivalent of pyridine per Pd center leads to dramatic enhancements in both reactivity and site selectivity in comparison to Pd(OAc)2 alone.
Platinum and palladium complexes containing cationic ligands as catalysts for arene H/D exchange and oxidation
Emmert, Marion H.,Gary, J. Brannon,Villalobos, Janette M.,Sanford, Melanie S.
supporting information; experimental part, p. 5884 - 5886 (2010/11/19)
Cationic catalysts in HD: Palladium(II) and platinum(II) complexes of pyridinium-substituted bipyridine ligands are highly active and stable catalysts for H/D exchange and oxidation of aromatic C-H bonds (TONs up to 3200, TOFs up to 0.1 s-1; se