40896-96-6Relevant articles and documents
NOVEL COMPOUNDS FOR USE IN CANCER
-
, (2019/01/07)
It relates to the compounds of formula (I), or their pharmaceutically or veterinary acceptable salts, or their stereoisomers or mixtures of stereoisomers, wherein X, L,R1, R 2, and R 3 are as defined herein, which are cancer cell differentiation inducing agents. It also relates to pharmaceutical or veterinary compositions containing them, and to their use in medicine, in particular in the treatment and/or prevention of cancer, in particular by cell differentiation therapy.
NOVEL COMPOUNDS FOR USE IN COGNITION IMPROVEMENT
-
, (2016/04/19)
Novel compounds for use in cognition improvement It relates to certain compounds having a polycyclic structure and a -(C=O)NRaRb moiety, wherein the polycyclic structure comprises at least three ring systems, wherein one ring system is a polycyclic ring system comprising from 2 to 4 rings; at least one ring is an aromatic ring; and wherein the structure comprises at least 3 nitrogen atoms and 1 oxygen atom. It also relates to pharmaceutical compositions containing them, and to their use in medicine, in particular in the treatment and/or prevention of neurological disorders coursing with a cognition deficit or impairment, or neurodegenerative diseases.
Design, Synthesis, and Biological Evaluation of First-in-Class Dual Acting Histone Deacetylases (HDACs) and Phosphodiesterase 5 (PDE5) Inhibitors for the Treatment of Alzheimer's Disease
Rabal, Obdulia,Sánchez-Arias, Juan A.,Cuadrado-Tejedor, Mar,De Miguel, Irene,Pérez-González, Marta,García-Barroso, Carolina,Ugarte, Ana,Estella-Hermoso De Mendoza, Ander,Sáez, Elena,Espelosin, Maria,Ursua, Susana,Haizhong, Tan,Wei, Wu,Musheng, Xu,Garcia-Osta, Ana,Oyarzabal, Julen
, p. 8967 - 9004 (2016/10/22)
Simultaneous inhibition of phosphodiesterase 5 (PDE5) and histone deacetylases (HDAC) has recently been validated as a potentially novel therapeutic approach for Alzheimer's disease (AD). To further extend this concept, we designed and synthesized the first chemical series of dual acting PDE5 and HDAC inhibitors, and we validated this systems therapeutics approach. Following the implementation of structure- and knowledge-based approaches, initial hits were designed and were shown to validate our hypothesis of dual in vitro inhibition. Then, an optimization strategy was pursued to obtain a proper tool compound for in vivo testing in AD models. Initial hits were translated into molecules with adequate cellular functional responses (histone acetylation and cAMP/cGMP response element-binding (CREB) phosphorylation in the nanomolar range), an acceptable therapeutic window (>1 log unit), and the ability to cross the blood-brain barrier, leading to the identification of 7 as a candidate for in vivo proof-of-concept testing (Cuadrado-Tejedor, M.; Garcia-Barroso, C.; Sánchez-Arias, J. A.; Rabal, O.; Mederos, S.; Ugarte, A.; Franco, R.; Segura, V.; Perea, G.; Oyarzabal, J.; Garcia-Osta, A. Neuropsychopharmacology 2016, in press, doi: 10.1038/npp.2016.163).
NOVEL COMPOUNDS AS DUAL INHIBITORS OF PHOSPHODIESTERASES AND HISTONE DEACETYLASES
-
Page/Page column 74; 75, (2014/09/16)
It relates to certain compounds having a polycyclic structure and a hydroxamic acid moiety, wherein the polycyclic structure comprises at least three ring systems, wherein one ring system is a polycyclic ring system comprising from 2 to 4 rings; at least one ring is an aromatic ring; and wherein the structure comprises at least 3 nitrogen atoms and 1 oxygen atom. It also relates to a process for their preparation, as well as to pharmaceutical compositions containing them, and to their use in medicine, in particular in the treatment and/or prevention of neurological disorders coursing with a cognition deficit or impairment, or neurodegenerative diseases. wherein B1 is a radical selected from the group consisting of formula (A"), formula (B"), formula (C"), and formula (D"):