75-03-6Relevant articles and documents
N-ALKYL THIOCARBAMOYL PHOSPHONIC ACID ESTERS-2. ALKYLATION BY METHYL IODIDE ACCOMPANIED BY PHOSPHONATE DEALKYLATION
Tashma, Zeev
, p. 3745 - 3748 (1982)
Thiocarbamoyl phosphonates 1 did not react with alkylating agents to give the S-alkyl derivatives 2, but gave zwitterions 3a-e in which the phosphonate ester moiety was dealkylated.In some cases starting material could be recovered.A mechanism is suggested in order to explain the relationship between the alkylation and the dealkylation steps of the reaction.
Visible-light-mediated multicomponent reaction for secondary amine synthesis
Wang, Xiaochen,Zhu, Binbing,Dong, Jianyang,Tian, Hao,Liu, Yuxiu,Song, Hongjian,Wang, Qingmin
supporting information, p. 5028 - 5031 (2021/05/28)
The widespread presence of secondary amines in agrochemicals, pharmaceuticals, natural products, and small-molecule biological probes has inspired efforts to streamline the synthesis of molecules with this functional group. Herein, we report an operationally simple, mild protocol for the synthesis of secondary amines by three-component alkylation reactions of imines (generated in situ by condensation of benzaldehydes and anilines) with unactivated alkyl iodides catalyzed by inexpensive and readily available Mn2(CO)10. This protocol, which is compatible with a wide array of sensitive functional groups and does not require a large excess of the alkylating reagent, is a versatile, flexible tool for the synthesis of secondary amines.
Visible-Light-Mediated C-I Difluoroallylation with an α-Aminoalkyl Radical as a Mediator
Yue, Fuyang,Dong, Jianyang,Liu, Yuxiu,Wang, Qingmin
supporting information, p. 7306 - 7310 (2021/10/01)
Herein, we report a protocol for direct visible-light-mediated C-I difluoroallylation reactions of α-trifluoromethyl arylalkenes with alkyl iodides at room temperature with an α-aminoalkyl radical as a mediator. The protocol permits efficient functionalization of various α-trifluoromethyl arylalkenes with cyclic and acyclic primary, secondary, and tertiary alkyl iodides and is scalable to the gram level. This mild protocol uses an inexpensive mediator and is suitable for late-stage functionalization of complex natural products and drugs.
Quinim: A New Ligand Scaffold Enables Nickel-Catalyzed Enantioselective Synthesis of α-Alkylated ?-Lactam
Chen, Yifeng,Qu, Jingping,Wu, Xianqing
supporting information, p. 15654 - 15660 (2020/10/18)
Herein, we report a nickel-catalyzed reductive cross-coupling reaction of easily accessible 3-butenyl carbamoyl chloride with primary alkyl iodide to access the chiral α-alkylated pyrrolidinone with broad substrate scope and high enantiomeric excess. The current art of synthesis still remains challenging on the enantioselective α-monoalkylation of pyrrolidinones. The newly designed chiral 8-quinoline imidazoline ligand (Quinim) is crucial for maintaining the reactivity and enantioselectivity to ensure the reductive cyclization of monosubstituted alkenes for unprecedented synthesis of chiral non-aromatic heterocycles.
SMALL MOLECULES FOR DUAL FUNCTION POSITRON EMISSION TOMOGRAPHY (PET) AND CELL SUICIDE SWITCHES
-
Sheet 6, (2019/03/14)
The present invention includes an engineered cell comprising a chimeric antigen receptor (CAR) further comprising a nucleic acid molecule comprising a suicide gene comprising a ligand binding domain and a suicide domain wherein the ligand binding domain is capable of binding to radiolabeled tracer or a small molecule suicide switch. This invention also includes methods for inducing apoptosis of an engineered cell, methods for assessing the efficacy or toxicity of an adoptive cell therapy in a subject, methods for detecting the quantity of engineered T cells in a subject, methods for monitoring an immunotherapy treatment in a subject and methods of imaging engineered T cells in a subject. In some embodiments, the imaging is performed via Positron Emission Topography (PET). This invention further includes a chemical inducer of dimerization (CID), wherein the CID is a Bis-Trimethoprim (Bis-TMP).
Mechanism of Hydrocarbon Functionalization by an Iodate/Chloride System: The Role of Ester Protection
Schwartz, Nichole A.,Boaz, Nicholas C.,Kalman, Steven E.,Zhuang, Thompson,Goldberg, Jonathan M.,Fu, Ross,Nielsen, Robert J.,Goddard, William A.,Groves, John T.,Gunnoe, T. Brent
, p. 3138 - 3149 (2018/04/14)
Mixtures of chloride and iodate salts for light alkane oxidation achieve >20% yield of methyl trifluoroacetate (TFA) from methane with >85% selectivity. The mechanism of this C-H oxygenation has been probed by examining adamantane as a model substrate. These recent results lend support to the involvement of free radicals. Comparative studies between radical chlorination and iodate/chloride functionalization of adamantane afford statistically identical 3°:2° selectivities (~5.2:1) and kinetic isotope effects for C-H/C-D functionalization (kH/kD = 1.6(3), 1.52(3)). Alkane functionalization by iodate/chloride in HTFA is proposed to occur through H-atom abstraction by free radical species including Cl? to give alkyl radicals. Iodine, which forms by in situ reduction of iodate, traps alkyl radicals as alkyl iodides that are subsequently converted to alkyl esters in HTFA solvent. Importantly, the alkyl ester products (RTFA) are quite stable to further oxidation under the oxidizing conditions due to the protecting nature of the ester moiety.
Synthesis of ethyl 4,5-bis(diethoxyphosphorylmethyl)-3-furoate
Pevzner
, p. 62 - 67 (2016/03/12)
Preparative procedure for 4,5-bis(diethoxyphosphorylmethyl)-3-furoate from 4-chloromethyl-3-furoate is developed. It includes substitution of chlorine with iodine, phosphorylation by means of the Arbuzov reaction, chloromethylation of 4-(diethoxyphosphorylmethyl)-3-furoate in the position 5 of the furan ring, substitution of chlorine with iodine in the obtained chloromethyl derivative, and repeated phosphorylation with triethyl phosphite. It was found that ethyl 4-(diethoxyphosphorylmethyl)-5(chloromethyl)-3-furoate reacts with sodium diethyl phosphite by two pathways. Besides usual nucleophilic substitution leading to phosphonate, transfer of the reaction center in the position 2 of the furan ring takes place. The ambident diethylphosphite anion in this case reacts at the oxygen to give tertiary phosphite. The latter is oxidized with the air oxygen to form ethyl 2-(diethoxyphosphoryloxy)-4-(diethoxyphosphorylmethyl)-5-methyl-3-furoate. Unlike that analogous iodomethyl phosphonate is phosphorylated selectively under the conditions of the Arbuzov reaction.
MgI2-Mediated Chemoselective Cleavage of Protecting Groups: An Alternative to Conventional Deprotection Methodologies
Berthet, Mathéo,Davanier, Florian,Dujardin, Gilles,Martinez, Jean,Parrot, Isabelle
supporting information, p. 11014 - 11016 (2015/11/10)
The scope of MgI2 as a valuable tool for quantitative and mild chemoselective cleavage of protecting groups is described here. This novel synthetic approach expands the use of protecting groups, widens the concept of orthogonality in synthetic processes, and offers a facile opportunity to release compounds from solid supports. Amazing MgI2: Protecting groups have had a tremendous positive impact on the art of biomolecule synthesis. In a context in which the use of attractive protecting groups is often limited by harsh deprotection conditions and low chemoselective flexibility, MgI2 offers, by the execution of a very simple protocol, a fresh vision with extensive perspectives.
Highly enantioselective simmons-smith fluorocyclopropanation of allylic alcohols via the halogen scrambling strategy of zinc carbenoids
Beaulieu, Louis-Philippe B.,Schneider, Jakob F.,Charette, Andre B.
supporting information, p. 7819 - 7822 (2013/06/27)
Highly enantio- and diastereoenriched monofluorocyclopropanes were accessed via the Simmons-Smith fluorocyclopropanation of allylic alcohols using difluoroiodomethane and ethylzinc iodide as the substituted carbenoid precursors. The scrambling of halogens
S-alkylation of thiacalixarenes: A long-neglected possibility in the calixarene family
Kundrat, Ondrej,Eigner, Vaclav,Dvorakova, Hana,Lhotak, Pavel
supporting information; scheme or table, p. 4032 - 4035 (2011/09/20)
Despite the high nucleophilicity of sulfur atoms, thiacalixarenes have been alkylated only on oxygen atoms thus far. Using strong alkylating agents (triflates, trialkyloxonium salts), the substitution of the sulfur bridges has been successfully accomplished. The corresponding sulfonium salts of thiacalix[4]arene are formed regio- and stereoselectively as a completely new type of substitution pattern in thiacalixarene chemistry. These compounds possess interesting conformational behavior and could be used as unusual alkylating agents with uncommon selectivity.