Welcome to LookChem.com Sign In|Join Free

CAS

  • or
2-Propenal, 3-(2-methylphenyl)-, commonly known as cinnamaldehyde, is a chemical compound with the molecular formula C9H8O. It is a yellow liquid characterized by a distinct cinnamon-like aroma. 2-Propenal, 3-(2-methylphenyl)is widely recognized for its use as a flavoring agent in the food and beverage industry, as well as in the production of perfumes and cosmetics. Cinnamaldehyde also serves as a precursor in the synthesis of pharmaceuticals and agricultural chemicals. Its potential antimicrobial, antifungal, and antioxidant properties have garnered interest in medical and biotechnological applications. However, it is important to note that cinnamaldehyde can cause irritation to the eyes, skin, and respiratory tract, and it is considered a potential allergen.

4549-82-0 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 4549-82-0 Structure
  • Basic information

    1. Product Name: 2-Propenal, 3-(2-methylphenyl)-
    2. Synonyms:
    3. CAS NO:4549-82-0
    4. Molecular Formula: C10H10O
    5. Molecular Weight: 146.189
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 4549-82-0.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: 2-Propenal, 3-(2-methylphenyl)-(CAS DataBase Reference)
    10. NIST Chemistry Reference: 2-Propenal, 3-(2-methylphenyl)-(4549-82-0)
    11. EPA Substance Registry System: 2-Propenal, 3-(2-methylphenyl)-(4549-82-0)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 4549-82-0(Hazardous Substances Data)

4549-82-0 Usage

Uses

Used in Food and Beverage Industry:
2-Propenal, 3-(2-methylphenyl)is used as a flavoring agent for its characteristic cinnamon-like odor, enhancing the taste and aroma of various food and beverage products.
Used in Perfume and Cosmetic Industry:
Cinnamaldehyde is utilized as a key ingredient in the production of perfumes and cosmetics, contributing to their distinctive scents and fragrances.
Used in Pharmaceutical Synthesis:
2-Propenal, 3-(2-methylphenyl)is used as a raw material in the synthesis of pharmaceuticals, owing to its chemical properties that facilitate the creation of various medicinal compounds.
Used in Agricultural Chemicals:
Cinnamaldehyde is employed in the production of agricultural chemicals, where it may contribute to the development of pest control agents or other agricultural products.
Used in Antimicrobial Applications:
2-Propenal, 3-(2-methylphenyl)is used for its potential antimicrobial properties, making it a candidate for applications in medicine and biotechnology to combat microbial infections.
Used in Antifungal Applications:
Cinnamaldehyde is utilized for its antifungal properties, which can be beneficial in treating fungal infections or in the development of antifungal products.
Used in Antioxidant Applications:
2-Propenal, 3-(2-methylphenyl)is used for its antioxidant properties, which can help in the development of products that prevent or reduce oxidative damage in various applications, including food preservation and health supplements.

Check Digit Verification of cas no

The CAS Registry Mumber 4549-82-0 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 4,5,4 and 9 respectively; the second part has 2 digits, 8 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 4549-82:
(6*4)+(5*5)+(4*4)+(3*9)+(2*8)+(1*2)=110
110 % 10 = 0
So 4549-82-0 is a valid CAS Registry Number.

4549-82-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 20, 2017

Revision Date: Aug 20, 2017

1.Identification

1.1 GHS Product identifier

Product name ALPHA-METHYLCINNAMALDEHYDE

1.2 Other means of identification

Product number -
Other names 2-METHYLCINNAMICALDEHYDE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:4549-82-0 SDS

4549-82-0Relevant articles and documents

An efficient Pd@Pro-GO heterogeneous catalyst for the α, β-dehydrogenation of saturated aldehyde and ketones

Pan, Gao-Fei,Wang, Zhe,Chang, Yi-Yuan,Hao, Yue,Wang, Yi-Chen,Xing, Rui-Guang

supporting information, (2021/12/30)

An Efficient Pd@Pro-GO heterogeneous catalyst was developed that can promote the α, β-dehydrogenation of saturated aldehyde and ketones in the yield of 73% ? 92% at mild conditions without extra oxidants and additives. Pd@Pro-GO heterogeneous catalyst was synthesized via two steps: firstly, the Pro-GO was obtained by the esterification reaction between graphene oxide (GO) and N-(tert-Butoxycarbonyl)-L-proline (Boc-Pro-OH), followed by removing the protection group tert-Butoxycarbonyl (Boc), which endowed the proline-functionalized GO with both the lewis acid site (COOH) and the bronsted base site (NH), besides, the pyrrolidine of proline also can form imine with aldehydes to activate these substrates; Second, palladium was dispersed on the proline-functionalized GO (Pro-GO) to obtained heterogeneous catalyst Pd@Pro-GO. Mechanistic studies have shown that the Pd@Pro-GO-catalyzed α,β-dehydrogenation of saturated aldehyde and ketones was realized by an improved heterogeneously catalyzed Saegusa oxidation reaction. Based on the obove characteristics, the Pd@Pro-GO will be widely used in the transition metal catalytic field.

Enantiodivergent One-Pot Synthesis of Axially Chiral Biaryls Using Organocatalyst-Mediated Enantioselective Domino Reaction and Central-to-Axial Chirality Conversion

Hayashi, Yujiro,Koshino, Seitaro,Kwon, Eunsang,Monde, Kenji,Taniguchi, Tohru

, p. 15786 - 15794 (2021/10/14)

Enantiodivergent one-pot synthesis of biaryls was developed using a catalytic amount of a single chiral source. A domino organocatalyst-mediated enantioselective Michael reaction and aldol condensation provided centrally chiral dihydronaphthalenes with excellent enantioselectivity, from which an enantiodivergent chirality conversion from central-to-axial chirality was achieved. Both enantiomers of biaryls were obtained with excellent enantioselectivity. All transformations can be conducted in a single reaction vessel. A plausible reaction mechanism for the enantiodivergence is proposed.

Biocatalytic Asymmetric Cyclopropanations via Enzyme-Bound Iminium Ion Intermediates

Kunzendorf, Andreas,Poelarends, Gerrit J.,Saifuddin, Mohammad,Saravanan, Thangavelu,Xu, Guangcai

supporting information, p. 24059 - 24063 (2021/10/07)

Cyclopropane rings are an important structural motif frequently found in many natural products and pharmaceuticals. Commonly, biocatalytic methodologies for the asymmetric synthesis of cyclopropanes rely on repurposed or artificial heme enzymes. Here, we engineered an unusual cofactor-independent cyclopropanation enzyme based on a promiscuous tautomerase for the enantioselective synthesis of various cyclopropanes via the nucleophilic addition of diethyl 2-chloromalonate to α,β-unsaturated aldehydes. The engineered enzyme promotes formation of the two new carbon-carbon bonds with excellent stereocontrol over both stereocenters, affording the desired cyclopropanes with high diastereo- and enantiopurity (d.r. up to 25:1; e.r. up to 99:1). Our results highlight the usefulness of promiscuous enzymes for expanding the biocatalytic repertoire for non-natural reactions.

Method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and diphosphine ligand used in method

-

Paragraph 0149-0154, (2021/05/29)

The invention discloses a method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and a diphosphine ligand used in the method. According to the invention, indole-substituted phosphoramidite diphosphine ligand which is stable in air and insensitive to light is synthesized by utilizing a continuous one-pot method, and the indole-substituted phosphoramidite diphosphine ligand and a rhodium catalyst are used for jointly catalyzing to successfully achieve a hydroformylation reaction of aromatic terminal alkyne and terminal conjugated eneyne under the condition of synthesis gas for the first time, so that an olefine aldehyde structure compound can be rapidly and massively prepared, and particularly, a polyolefine aldehyde structure compound which is more difficult to synthesize in the prior art can be easily prepared and synthesized, and a novel method is provided for synthesis and modification of drug molecules, intermediates and chemical products.

Tandem oxidation-dehydrogenation of (hetero)arylated primary alcohols via perruthenate catalysis

Bettencourt, Christian J.,Chow, Sharon,Moore, Peter W.,Read, Christopher D.G.,Jiao, Yanxiao,Bakker, Jan Peter,Zhao, Sheng,Bernhardt, Paul V.,Williams, Craig M.

, p. 652 - 659 (2021/09/08)

Tandem oxidative-dehydrogenation of primary alcohols to give a,b-unsaturated aldehydes in one pot are rare transformations in organic synthesis, with only two methods currently available. Reported herein is a novel method using the bench-stable salt methyltriphenylphosphonium perruthenate (MTP3), and a new co-oxidant NEMO&middoPF6 (NEMO = N-ethyl-N-hydroxymorpholinium) which provides unsaturated aldehydes in low to moderate yields. The Ley-Griffith oxidation of (hetero)arylated primary alcohols with N-oxide co-oxidants NMO (NMO = N-methylmorpholine N-oxide)/NEMO, is expanded by addition of the N-oxide salt NEMO&middoPF6 to convert the intermediate saturated aldehyde into its unsaturated counterpart. The discovery, method development, reaction scope, and associated challenges of this method are highlighted. The conceptual value of late-stage dehydrogenation in natural product synthesis is demonstrated via the synthesis of a polyene scaffold related to auxarconjugatin B.

Selective Rhodium-Catalyzed Hydroformylation of Terminal Arylalkynes and Conjugated Enynes to (Poly)enals Enabled by a π-Acceptor Biphosphoramidite Ligand

Zhao, Jiangui,Zheng, Xueli,Tao, Shaokun,Zhu, Yuxin,Yi, Jiwei,Tang, Songbai,Li, Ruixiang,Chen, Hua,Fu, Haiyan,Yuan, Maolin

supporting information, p. 6067 - 6072 (2021/08/16)

The hydroformylation of terminal arylalkynes and enynes offers a straightforward synthetic route to the valuable (poly)enals. However, the hydroformylation of terminal alkynes has remained a long-standing challenge. Herein, an efficient and selective Rh-catalyzed hydroformylation of terminal arylalkynes and conjugated enynes has been achieved by using a new stable biphosphoramidite ligand with strong π-acceptor capacity, which affords various important E-(poly)enals in good yields with excellent chemo- and regioselectivity at low temperatures and low syngas pressures.

Scalable Aerobic Oxidation of Alcohols Using Catalytic DDQ/HNO3

Arseniyadis, Stellios,Clavier, Louis,Copin, Chloé,Fournier, Jean,Giffard, Jean-Fran?ois,Jean, Alexandre,Katsina, Tania,Macedo Portela Da Silva, Nayane,Tamion, Rodolphe

supporting information, p. 856 - 860 (2020/07/14)

A selective, practical, and scalable aerobic oxidation of alcohols is described that uses catalytic amounts of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and HNO3, with molecular oxygen serving as the terminal oxidant. The method was successfully applied to the oxidation of a wide range of benzylic, propargylic, and allylic alcohols, including two natural products, namely, carveol and podophyllotoxin. The conditions are also applicable to the selective oxidative deprotection of p-methoxybenzyl ethers.

Enantiocomplementary Epoxidation Reactions Catalyzed by an Engineered Cofactor-Independent Non-natural Peroxygenase

Crotti, Michele,Kataja, Kim M.,Poelarends, Gerrit J.,Saravanan, Thangavelu,Xu, Guangcai

supporting information, p. 10374 - 10378 (2020/04/23)

Peroxygenases are heme-dependent enzymes that use peroxide-borne oxygen to catalyze a wide range of oxyfunctionalization reactions. Herein, we report the engineering of an unusual cofactor-independent peroxygenase based on a promiscuous tautomerase that accepts different hydroperoxides (t-BuOOH and H2O2) to accomplish enantiocomplementary epoxidations of various α,β-unsaturated aldehydes (citral and substituted cinnamaldehydes), providing access to both enantiomers of the corresponding α,β-epoxy-aldehydes. High conversions (up to 98 %), high enantioselectivity (up to 98 % ee), and good product yields (50–80 %) were achieved. The reactions likely proceed via a reactive enzyme-bound iminium ion intermediate, allowing tweaking of the enzyme's activity and selectivity by protein engineering. Our results underscore the potential of catalytic promiscuity for the engineering of new cofactor-independent oxidative enzymes.

Highly Enantioselective Synthesis of Functionalized Glutarimide Using Oxidative N-Heterocyclic Carbene Catalysis: A Formal Synthesis of (?)-Paroxetine

Porey, Arka,Santra, Surojit,Guin, Joyram

supporting information, p. 5313 - 5327 (2019/04/16)

A simple yet highly effective approach toward enantioselective synthesis of trans-3,4-disubstituted glutarimides from readily available starting materials is developed using oxidative N-heterocyclic carbene catalysis. The catalytic reaction involves a formal [3 + 3] annulation between enals and substituted malonamides enabling the production of glutarimide derivatives in a single chemical operation via concomitant formation of C-C and C-N bonds. The reaction offers easy access to a broad range of functionalized glutarimides with excellent enantioselectivity and good yield. Synthetic application of the method is demonstrated via formal synthesis of (?)-paroxetine and other bioactive molecules.

Enantioselective Organocatalytic Enamine C?H Oxidation/Diels- Alder Reaction

D?ambaski, Zdravko,Tzaras, Dimitrios-Ioannis,Lee, Sunggi,Kokotos, Christoforos G.,Bondzic, Bojan P.

supporting information, p. 1792 - 1797 (2019/02/25)

α,β-unsaturated aldehydes have been traditionally used in LUMO lowering asymmetric aminocatalysis (iminium catalysis), while the use of saturated aldehydes as substrates in this type of catalysis has been elusive, until recently. Herein, we demonstrate that organic, single-electron oxidants in the presence of diarylprolinol silylether type catalysts serve as effective tools for the transformation of electron rich enamines to iminium ions which partake in a subsequent Diels-Alder reaction. This enantioselective one-pot transformation represents the first example of saturated aldehydes being used in domino Diels-Alder reaction processes and demonstrates the power of this protocol for construction of stereo-defined chiral compounds and building blocks. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 4549-82-0