Welcome to LookChem.com Sign In|Join Free

CAS

  • or

55133-99-8

Post Buying Request

55133-99-8 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

55133-99-8 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 55133-99-8 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,5,1,3 and 3 respectively; the second part has 2 digits, 9 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 55133-99:
(7*5)+(6*5)+(5*1)+(4*3)+(3*3)+(2*9)+(1*9)=118
118 % 10 = 8
So 55133-99-8 is a valid CAS Registry Number.

55133-99-8SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 13, 2017

Revision Date: Aug 13, 2017

1.Identification

1.1 GHS Product identifier

Product name (2-methylphenyl)methyl 2-methylbenzoate

1.2 Other means of identification

Product number -
Other names (2-methylphenyl)methyl ester

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:55133-99-8 SDS

55133-99-8Downstream Products

55133-99-8Relevant articles and documents

Iodine-catalyzed synthesis of β-uramino crotonic esters as well as oxidative esterification of carboxylic acids in choline chloride/urea: a desirable alternative to organic solvents

Moayyed, Mohammadesmaeil,Saberi, Dariush

, p. 445 - 455 (2020/09/07)

Abstract: Iodine-mediated selective synthesis of β-uramino crotonic esters was achieved via the reaction of β-dicarbonyls and urea at room temperature. Choline chloride/urea mixture, as an eco-friendly, cheap, non-toxic, and recyclable deep eutectic solvent (DES), was employed as sustainable media as well as reagent at the same time in these transformations. Some derivatives of β-uramino crotonic esters were synthesized with good to high yields without a tedious work-up. The process could be done to synthesize the above-mentioned compounds in gram scale. Moreover, oxidative cross-esterification of carboxylic acids with alkyl benzenes was carried out in the above-mentioned DES by the employment of tetrabutylammonium iodide (TBAI) as the catalyst and tert-butyl hydroperoxide (TBHP) as the oxidant at 80?°C. DES/TBAI system was reused up to five consecutive times. Graphic abstract: Iodine-catalyzed C–N and C–O bond formation in choline chloride/urea as a green solvent under the mild reaction conditions. Providing the clean procedure toward synthesis of β-uramino crotonic esters and benzylic esters.[Figure not available: see fulltext.].

Aldehyde effect and ligand discovery in Ru-catalyzed dehydrogenative cross-coupling of alcohols to esters

Jiang, Xiaolin,Zhang, Jiahui,Zhao, Dongmei,Li, Yuehui

, p. 2797 - 2800 (2019/03/27)

The presence of different aldehydes is found to have a significant influence on the catalytic performance when using PN(H)P type ligands for dehydrogenation of alcohols. Accordingly, hybrid multi-dentate ligands were discovered based on an oxygen-transfer alkylation of PNP ligands by aldehydes. The relevant Ru-PNN(PO) system provided the desired unsymmetrical esters in good yields via acceptorless dehydrogenation of alcohols. Hydrogen bonding interactions between the phosphine oxide moieties and alcohol substrates likely assisted the observed high chemoselectivity.

Rhodium-catalyzed synthesis of imines and esters from benzyl alcohols and nitroarenes: Change in catalyst reactivity depending on the presence or absence of the phosphine ligand

Song, Taemoon,Park, Ji Eun,Chung, Young Keun

, p. 4197 - 4203 (2018/04/14)

The [Rh(COD)Cl]2/xantphos/Cs2CO3 system efficiently catalyzes the reductive N-alkylation of aryl nitro compounds with alcohols by a borrowing-hydrogen strategy to afford the corresponding imine products in good to excellent yields. In the absence of xantphos, the [Rh(COD)Cl]2/Cs2CO3 catalytic system behaves as an effective catalyst for the dehydrogenative coupling of alcohols to esters, with nitrobenzene as a hydrogen acceptor. The reactivity of the rhodium catalytic system can be easily manipulated to selectively afford the imine or ester.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 55133-99-8