Welcome to LookChem.com Sign In|Join Free

CAS

  • or

56-55-3

Post Buying Request

56-55-3 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

56-55-3 Usage

Description

1,2-Benzanthracene is available as colourless to yellow-brown fluorescent flakes or powder. It is stable, combustible, and incompatible with strong oxidising agents. On decomposition, 1,2-benzanthracene releases carbon monoxide, carbon dioxide, acrid smoke, and fumes. Exposures may cause irritation of the eyes, skin, and respiratory tract.

Chemical Properties

Different sources of media describe the Chemical Properties of 56-55-3 differently. You can refer to the following data:
1. solid
2. 1,2-Benzanthracene is available as colorless to yellow brown fl uorescent fl akes or powder. It is stable, combustible, and incompatible with strong oxidizing agents. On decomposition, 1,2-benzanthracene releases carbon monoxide, carbon dioxide, acrid smoke, and fumes. During work, 1,2-benzanthracene can be absorbed into the body of occupational workers by inhalation, through the skin, and by ingestion. Exposures may cause irritation to the eyes, skin, and respiratory tract.
3. Benz(a)anthracene is a colorless plate-like material which is recrystallized from glacial acetic acid or a light yellow to tan powder. PAHs are compounds containing multiple benzene rings and are also called polynuclear aromatic hydro carbons.

Physical properties

Colorless leaflets or plates with a greenish-yellow fluorescence

Uses

Different sources of media describe the Uses of 56-55-3 differently. You can refer to the following data:
1. Benz[a]anthracene is primarily used in research.
2. Benz[a]anthracene can be used in the synthesis of other polycyclic aromatic hydrocarbons such as tribenzo[a,c,f]tetraphene.2 It can also be used for phosphorescence applications.
3. Benz[a]anthracene is a PAH that has carcinogenic properties. It is also used in the synthesis of anti-tumor agents.

Synthesis Reference(s)

The Journal of Organic Chemistry, 27, p. 3716, 1962 DOI: 10.1021/jo01057a528

General Description

Colorless leaflets or plates or coarse gold powder with a greenish-yellow fluorescence. May reasonably be expected to be a carcinogen.

Air & Water Reactions

Insoluble in water.

Reactivity Profile

1,2-BENZANTHRACENE may react vigorously with strong oxidizing agents. Can react exothermically with bases and with diazo compounds. Substitution at the benzene nucleus occurs by halogenation (acid catalyst), nitration, sulfonation, and the Friedel-Crafts reaction.

Hazard

Confirmed carcinogen. Found in oils, waxes, smoke, food, drugs.

Health Hazard

Different sources of media describe the Health Hazard of 56-55-3 differently. You can refer to the following data:
1. There is no report on its oral toxicity.However, it may be highly toxic by intravenous administration. A lethal dose in miceis reported as 10 mg/kg. Its carcinogenicactions in animals is well established. Subcutaneous administration of this compoundin mice resulted in tumors at the sites ofapplicationFlesher and Myers (1990) have correlatedcarcinogenic activity of benzo[a]anthraceneto its bioalkylation at the site of injection.Male rats were dosed subcutaneously andthe tissue in contact with the hydrocarbonwas visualized after 24 hours under UV light.Bioalkylation or the biochemical introductionof an alkyl group occurred at the mesoanthracenic centers, which are the most reactivesites in the molecule.
2. ACUTE/CHRONIC HAZARDS: When heated to decomposition 1,2-BENZANTHRACENE emits acrid smoke and irritating fumes.
3. Exposures to 1,2-benzanthracene is known to cause kidney damage. However, published data on the neurotoxicity, teratogenicity, reproductive toxicity, and mutagenicity of 1,2-benzanthracene is not available.

Fire Hazard

Flash point data for 1,2-BENZANTHRACENE are not available. 1,2-BENZANTHRACENE is probably combustible.

Safety Profile

Confirmed carcinogen with experimental carcinogenic, neoplastigenic, and tumorigenic data by skin contact and other routes. Poison by intravenous route. Human mutation data reported. It is found in oils, waxes, smoke, food, drugs. When heated to decomposition it emits acrid smoke and irritating fumes.

Potential Exposure

Benz(a)anthracene is a contaminant and does not have any reported commercial use or application, although one producer did report the substance for the Toxic Substances Control Act Inventory. Benz(a)anthracene has been reported present in cigarette smoke condensate, automobile exhaust gas; soot; and the emissions from coal and gas works and electric plants. Benz(a)anthracene also occurs in the aromatic fraction of mineral oil, commercial solvents, waxes, petrolatum, creosote, coal tar; petroleum asphalt; and coal tar pitch. Microgram quantities of benz(a)anthracene can be found in various foods, such as charcoal broiled, barbecued, or smoked meats and fish; certain vegetables and vegetable oils, roasted coffee, and coffee powders. Human subjects are exposed to benz(a) anthracene through either inhalation or ingestion. Workers at facilities with likely exposure to fumes from burning or heating of organic materials have a potential for exposure to benz(a)anthracene. Consumers can be exposed to this chemical through ingestion of various foods, with concentrations of 100 μg/kg in some instances. Cigarette smoke condensate has quantities of benz(a)anthracene that range from 0.03 to 4.6 μg/g. Benz(a)anthracene is found in the atmosphere at levels that vary with geography and climatology. These values can range from up to 136 μg/1000 m3 in summer to 361 μg/1000 m3 in winter. Drinking water samples may contain up to 0.023 μg/L benz(a)anthracene, and surface waters have been found to contain 0.004 0.185 μg/L. The soil near industrial centers has been shown to contain as much as 390 μg/kg of Benz(a)anthracene, whereas soil near highways can have levels of up to 1500 μg/kg, and areas polluted with coal tar pitch can reach levels of 2500 mg/kg.

Carcinogenicity

BA’s metabolites are genotoxic in the Ames mutation test and caused unscheduled DNA synthesis in primary rat hepatocytes.In an in vivo mutagenic assay, male CD rats (6/group) were dosed three times with BA over a 24-hour interval by intratracheal instillation. Lung cells were enzymatically separated and used to determine the frequency of DNA adducts, sister chromatid exchanges (SCEs), and micronuclei. BA induced DNA adducts, SCEs, and micronuclei in this rat lung cell system.Benz(a)anthracene is designated an A2- suspected human carcinogen by ACGIH and has no assigned threshold limit value.

Source

Concentrations in 8 diesel fuels ranged from 0.018 to 5.9 mg/L with a mean value of 0.93 mg/L (Westerholm and Li, 1994). Identified in Kuwait and South Louisiana crude oils at concentrations of 2.3 and 1.7 ppm, respectively (Pancirov and Brown, 1975). The concentration of benzo[a]anthracene in coal tar and the maximum concentration reported in groundwater at a mid-Atlantic coal tar site were 3,900 and 0.0079 mg/L, respectively (Mackay and Gschwend, 2001). Based on laboratory analysis of 7 coal tar samples, benzo[a]anthracene concentrations ranged from 600 to 5,100 ppm (EPRI, 1990). Detected in 1-yr aged coal tar film and bulk coal tar at concentrations of <1,500 and 850 mg/kg, respectively (Nelson et al., 1996). Lehmann et al. (1984) reported benzo[a]anthracene concentrations of 7.3 mg/g in a commercial anthracene oil and 8,400 to 13,100 mg/kg in three road tars. Also identified in high-temperature coal tar pitches used in roofing operations at concentrations ranging from 169,000 to 324,000 mg/kg (Malaiyandi et al., 1982). Detected in asphalt fumes at an average concentration of 53.49 ng/m3 (Wang et al., 2001). Nine commercially available creosote samples contained benzo[a]anthracene at concentrations ranging from 39 to 950 mg/kg (Kohler et al., 2000). Schauer et al. (2001) measured organic compound emission rates for volatile organic compounds, gas-phase semi-volatile organic compounds, and particle-phase organic compounds from the residential (fireplace) combustion of pine, oak, and eucalyptus. The particle-phase emission rates of benzo[a]anthracene were 1.22 mg/kg of pine burned, 0.630 mg/kg of oak burned, and 0.533 mg/kg of eucalyptus burned. The gas-phase emission rate was 0.032 mg/kg of eucalyptus burned. Gas-phase tailpipe emission rates from gasoline-powered automobiles with and without catalytic converters were 0.181 and 4.80 μg/km, respectively (Schauer et al., 2002). Under atmospheric conditions, a low rank coal (0.5–1 mm particle size) from Spain was burned in a fluidized bed reactor at seven different temperatures (50 °C increments) beginning at 650 °C. The combustion experiment was also conducted at different amounts of excess oxygen (5 to 40%) and different flow rates (700 to 1,100 L/h). At 20% excess oxygen and a flow rate of 860 L/h, the amount of benzo[a]anthracene emitted ranged from 91.2 ng/kg at 650 °C to 461.3 ng/kg at 750 °C. The greatest amount of PAHs emitted were observed at 750 °C (Mastral et al., 1999).

Environmental fate

Biological. In an enclosed marine ecosystem containing planktonic primary production and heterotrophic benthos, the major metabolites were water soluble and could not be extracted with organic solvents. The only degradation product identified was benzo[a]anthracene-7,12-dione (Hinga and Pilson, 1987). Under aerobic conditions, Cunninghanella elegans degraded benzo[a]anthracene to 3,4-, 8,9-, and 10,11-dihydrols (Kobayashi and Rittman, 1982; Riser- Roberts, 1992). Soil. The half-lives for benzo[a]anthracene in a Kidman sandy loam and McLaurin sandy loam were 261 and 162 d, respectively (Park et al., 1990). Surface Water. In a 5-m deep surface water body, the calculated half-lives for direct photochemical transformation at 40 °N latitude, in the midsummer during midday were 4.8 and 22.8 h with and without sediment-water partitioning, respectively (Zepp and Schlotzhauer, 1979). Photolytic. Benzo[a]anthracene-7,12-dione formed from the photolysis of benzo[a]an-thracene (λ = 366 nm) in an air-saturated, acetonitrile-water solvent (Smith et al., 1978). Chemical/Physical. Benzo[a]anthracene-7,12-dione and a monochlorinated product were formed during the chlorination of benzo[a]anthracene. At pH 4, the reported half-lives at chlorine concentrations of 0.6 and 10 mg/L were 2.3 and <0.2 h, respectively (Mori et al., 1991). When an aqueous solution containing benzo[a]anthracene (16.11 μg/L) was chlorinated for 6 h using chlorine (6 mg/L), the concentration was reduced 53% (Sforzolini et al., 1970).

storage

Store in a cool, dry, well-ventilated area away from incompatible substances. Keep containers tightly closed

Purification Methods

Crystallise 1,2-benzanthracene from MeOH, EtOH or *benzene (charcoal), then chromatograph it on alumina from sodium-dried *benzene (twice), using vacuum distillation to remove *benzene. Final purification is by vacuum sublimation. [Beilstein 5 IV 2549.]

Toxicity evaluation

Benz[a]anthracene is not synthesized commercially. The primary source of many PAHs in air is the combustion of wood and other fuels. PAHs released into the atmospheremay deposit onto soil or water. In surface water, PAHs can volatilize, bind to suspended particles, or accumulate in aquatic organisms. Adsorption to solid particles in the soil extended their half-life, benz[a]anthracene’s half-life in Kidman sandy loam is 261 days. The vapor pressure of benz[a]anthracene is 1.9×106mmHg at 25°C, and it has an atmospheric half-life of about 7.7 h due primarily to photochemical degradation.

Incompatibilities

Incompatible with oxidizers (chlorates, nitrates, peroxides, permanganates, perchlorates, chlorine, bromine, fluorine, etc.); contact may cause fires or explosions. Keep away from alkaline materials, strong bases, strong acids, oxoacids, epoxides. Powder can form an explosive mixture with air.

Waste Disposal

Atomize into incinerator with a flammable liquid.

Precautions

Workers should wash thoroughly after using and handling 1,2-benzanthracene. Use only in a well-ventilated area. Minimize dust generation and accumulation. Avoid contact with the eyes, skin, and clothing. Keep container tightly closed. Avoid ingestion and inhalation.

Check Digit Verification of cas no

The CAS Registry Mumber 56-55-3 includes 5 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 2 digits, 5 and 6 respectively; the second part has 2 digits, 5 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 56-55:
(4*5)+(3*6)+(2*5)+(1*5)=53
53 % 10 = 3
So 56-55-3 is a valid CAS Registry Number.
InChI:InChI=1/C18H12/c1-2-7-15-12-18-16(11-14(15)6-1)10-9-13-5-3-4-8-17(13)18/h1-12H

56-55-3 Well-known Company Product Price

  • Brand
  • (Code)Product description
  • CAS number
  • Packaging
  • Price
  • Detail
  • Sigma-Aldrich

  • (36956)  Benz[a]anthracenesolution  100 ng/μL in cyclohexane, analytical standard

  • 56-55-3

  • 36956-2ML

  • 629.46CNY

  • Detail
  • Sigma-Aldrich

  • (75451)  Benz[a]anthracene  certified reference material, TraceCERT®

  • 56-55-3

  • 75451-50MG

  • 1,075.23CNY

  • Detail
  • Supelco

  • (48651)  Benz[a]anthracenesolution  certified reference material, 200 μg/mL in methylene chloride

  • 56-55-3

  • 000000000000048651

  • 272.61CNY

  • Detail
  • Supelco

  • (40070-U)  Benz[a]anthracenesolution  certified reference material, 1000 μg/mL in methanol

  • 56-55-3

  • 40070-U

  • 359.19CNY

  • Detail
  • Supelco

  • (48563)  Benz[a]anthracene  analytical standard

  • 56-55-3

  • 000000000000048563

  • 566.28CNY

  • Detail
  • Aldrich

  • (B2209)  Benz[a]anthracene  99%

  • 56-55-3

  • B2209-500MG

  • 1,070.55CNY

  • Detail
  • Aldrich

  • (B2209)  Benz[a]anthracene  99%

  • 56-55-3

  • B2209-1G

  • 1,484.73CNY

  • Detail

56-55-3SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name tetraphene

1.2 Other means of identification

Product number -
Other names Benz[a]anthracene

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:56-55-3 SDS

56-55-3Relevant articles and documents

One-Pot Synthesis of Tetraphene and Construction of Expanded Conjugated Aromatics

Wang, Jianbo,Yao, Jinzhong,Wang, Hailong,Chen, Hao,Dong, Jingcheng,Zhou, Hongwei

, p. 5250 - 5255 (2016)

Acene derivatives as a class of polycyclic aromatic hydrocarbons have attracted considerable interest because of their outstanding semiconductor properties. We developed a one-pot synthesis for fully conjugated tetraphene via a sequence of propargyl-allenyl isomerization, phosphine addition, intramolecular Wittig reactions, and Diels-Alder cyclization reactions. The derivative-conjugated aromatic compounds including carbazole or triphenylamine have been constructed via Pd-catalyzed coupling reaction with dibromotetraphene. These compounds show superior photophysical and electrochemical properties, which make them possible candidates for optoelectronic conjugated materials.

Industrial production method of benzo [a] anthracene

-

, (2021/06/22)

The invention discloses an industrial production method of benzo [a] anthracene, which belongs to the technical field of organic synthesis, and comprises the following steps of carrying out lithium substitution on 2-bromonaphthalene through 2, 2, 6, 6-tetramethylpiperidine lithium, and carrying out boron esterification and acidification through triisopropyl borate to obtain 2-bromo-3-naphthaleneboronic acid, carrying out Suzuki reaction on 2-bromo-3-naphthaleneboronic acid and iodobenzene to prepare 2-bromo-3-phenyl naphthalene, carrying out lithium substitution on 2-bromo-3-phenyl naphthalene and n-butyllithium, and preparing 2-formyl-3-phenyl naphthalene through DMF, carrying out Witting reaction on 2-formyl-3-phenyl naphthalene, chloromethyl ether triphenylphosphine salt and sodium tert-butoxide to prepare 2-methoxyvinyl-3-phenyl naphthalene, and enabling 2-methoxyvinyl-3-phenyl naphthalene to be subjected to ring closing through methanesulfonic acid, and preparing benzo [a] anthracene. Compared with an existing benzo [a] anthracene synthesis method, raw materials are cheap and easy to obtain, operation is easy, discharge of three wastes is small, preparation is environmentally friendly, and industrial production is facilitated.

Reactivity Variation of Tetracyanoethylene and 4-Phenyl-1,2,4-Triazoline-3,5-Dione in Cycloaddition Reactions in Solutions

Kiselev, Vladimir D.,Kornilov, Dmitry A.,Anikin, Oleg V.,Shulyatiev, Alexey A.,Konovalov, Alexander I.

, p. 31 - 44 (2019/01/29)

The reasons for the very high reactivity and variability of reactivity of two dienophiles, tetracyanoethylene (1) and 4-phenyl-1,2,4-triazoline-3,5-dione (2), in the Diels–Alder reactions were considered. The data on the rate of reactions with anthracene (3), benzanthracene (4) and dibenzanthracene (5) in 14 solvents over a range of temperatures and high pressures, data on the change in the enthalpy of solvation of reagents, transition state, and adducts in the forward and backward reactions, and the enthalpies of these reactions in solution were obtained. Strong π-acceptor dienophile 1 has sharply reduced reactivity in reactions in π-donor aromatic solvents. It was observed that the π-acceptor properties of dienophile 1 disappear upon passage to the transition state and adduct. Large solvent effects on the reaction rate can be predicted for all types of reactions involving tetracyanoethylene. Very high reactivity of dienophiles 1 and, especially, 2 can be useful to catch such carcinogenic impurities such as 3–5 and neutralize them by transformation into less dangerous adducts.

Facile Synthesis of Polycyclic Aromatic Hydrocarbons: Br?nsted Acid Catalyzed Dehydrative Cycloaromatization of Carbonyl Compounds in 1,1,1,3,3,3-Hexafluoropropan-2-ol

Fujita, Takeshi,Takahashi, Ikko,Hayashi, Masaki,Wang, Jingchen,Fuchibe, Kohei,Ichikawa, Junji

, p. 262 - 265 (2017/01/24)

The cycloaromatization of aromatic aldehydes and ketones was readily achieved by using a Br?nsted acid catalyst in 1,1,1,3,3,3-hexafluoropropan-2-ol (HFIP). In the presence of a catalytic amount of trifluoromethanesulfonic acid, biaryl-2-ylacetaldehydes and 2-benzylbenzaldehydes underwent sequential intramolecular cationic cyclization and dehydration to afford phenacenes and acenes, respectively. Furthermore, biaryl-2-ylacetaldehydes bearing a cyclopentene moiety at the α-position underwent unprecedented cycloaromatization including ring expansion to afford triphenylenes. HFIP effectively promoted the cyclizations by suppressing side reactions presumably as a result of stabilization of the cationic intermediates.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 56-55-3