57750-82-0Relevant articles and documents
AROMATIC DERIVATIVE, PREPARATION METHOD FOR SAME, AND MEDICAL APPLICATIONS THEREOF
-
Paragraph 0173; 0290; 0291, (2020/07/24)
The present invention relates to an aromatic derivative, a preparation method thereof and medical applications thereof. Particularly, the present invention relates to a novel compound as shown in the general formula (I) and a pharmaceutically acceptable s
One-Pot Synthesis of Seven-Membered Heterocyclic Derivatives of Diazepines Involving Copper-Catalyzed Rearrangement Cascade Allyl-Amination
Chen, Yuepeng,Liu, Xinglei,Shi, Wei,Zheng, Shilong,Wang, Guangdi,He, Ling
, p. 5146 - 5157 (2020/05/19)
A novel and efficient method has been proposed for the synthesis of 1,4-benzodiazepine-5-ones from o-nitrobenzoic N-allylamides by using molybdenyl acetylacetonate and copper(II) trifluoromethanesulfonate as catalysts in the presence of triphenylphosphine. This synthesis process involves nitrene formation, C-H bond insertion, C≠C bond rearrangement, and C-N bond formation cascade reactions via copper- and molybdenum-catalyzed mediation. The method features a wide substrate scope and a moderate to high yield (up to 90%), exhibiting the possibility for practical applications.
Synthesis, docking, 3-D-qsar, and biological assays of novel indole derivatives targeting serotonin transporter, dopamine D2 receptor, and mao-a enzyme: In the pursuit for potential multitarget directed ligands
Alarcón-Espósito, Jazmín,Araya-Maturana, Ramiro,Cabezas, David,Cerda-Cavieres, Christopher,Chung, Hery,Iturriaga-Vásquez, Patricio,Mella-Raipán, Jaime,Ojeda-Gómez, Claudia,Pessoa-Mahana, Carlos D.,Pessoa-Mahana, Hernán,Quiroz, Gabriel,Reyes-Parada, Miguel,Rodríguez-Lavado, Julio,Saitz, Claudio
, (2020/10/18)
A series of 27 compounds of general structure 2,3-dihydro-benzo[1,4]oxazin-4-yl)-2-{4-[3-(1H-3indolyl)-propyl]-1-piperazinyl}-ethanamides, Series I: 7(a-o) and (2-{4-[3-(1H-3-indolyl) -propyl]-1-piperazinyl}-acetylamine)-N-(2-morfolin-4-yl-ethyl)-fluorinated benzamides Series II: 13(a-l) were synthesized and evaluated as novel multitarget ligands towards dopamine D2 receptor, serotonin transporter (SERT), and monoamine oxidase-A (MAO-A) directed to the management of major depressive disorder (MDD). All the assayed compounds showed affinity for SERT in the nanomolar range, with five of them displaying Ki values from 5 to 10 nM. Compounds 7k, Ki = 5.63 ± 0.82 nM, and 13c, Ki = 6.85 ± 0.19 nM, showed the highest potencies. The affinities for D2 ranged from micro to nanomolar, while MAO-A inhibition was more discrete. Nevertheless, compounds 7m and 7n showed affinities for the D2 receptor in the nanomolar range (7n: Ki = 307 ± 6 nM and 7m: Ki = 593 ± 62 nM). Compound 7n was the only derivative displaying comparable affinities for SERT and D2 receptor (D2/SERT ratio = 3.6) and could be considered as a multitarget lead for further optimization. In addition, docking studies aimed to rationalize the molecular interactions and binding modes of the designed compounds in the most relevant protein targets were carried out. Furthermore, in order to obtain information on the structure-activity relationship of the synthesized series, a 3-D-QSAR CoMFA and CoMSIA study was conducted and validated internally and externally (q2 = 0.625, 0.523 for CoMFA and CoMSIA and r2ncv = 0.967, 0.959 for CoMFA and CoMSIA, respectively).
Reversal of P-gp and BCRP-mediated MDR by tariquidar derivatives
Li, Xu-Qin,Wang, Lin,Lei, Yan,Hu, Tao,Zhang, Fei-Long,Cho, Chi-Hin,To, Kenneth K.W.
, p. 560 - 572 (2015/07/28)
Abstract With an aim to generate non-toxic, specific and highly potent multidrug resistance (MDR) modulators, a novel series of anthranilic acid amide-substituted tariquidar derivatives were synthesized. The new compounds were evaluated for their cytotoxicity toward normal human colon fibroblasts (CCD18-Co), human gastric epithelial cell line (HFE) and primary rat liver cells, and for their ability to inhibit P-gp/BCRP-mediated drug efflux and reversal of P-gp and BCRP-mediated MDR in parental and drug-resistant cancer cell lines (LCC6 MDR1, MCF-7 FLV1000, R-HepG2, SW620-Ad300). While tariquidar is highly toxic to normal cells, the new derivatives exhibited much lower or negligible cytotoxicity. Some of the new tariquidar derivatives inhibited both P-gp and BCRP-mediated drug efflux whereas a few of them bearing a sulfonamide functional group (1, 5, and 16) are specific to P-gp. The new compounds were also found to potentiate the anticancer activity of the transporter substrate anticancer drugs in the corresponding transporter-overexpressing cell lines. The extent of resistance reversal was found to be consistent with the transporter inhibitory effect of the new derivatives. To further understand the mechanism of P-gp and BCRP inhibition, the tariquidar derivatives were found to interact with the transporters using an antibody-based UIC2 or 5D3 shift assay. Moreover, the transporters-inhibiting derivatives were found to modulate the ATPase activities of the two MDR transporters. Our data thus advocate further development of the new compounds for the circumvention of MDR.
CARBOXYLIC ACID COMPOUNDS AND MEDICINAL COMPOSITIONS CONTAINING THE SAME AS THE ACTIVE INGREDIENT
-
Page/Page column 43, (2008/06/13)
A compound represented by formula (I) wherein the symbols in the formula are the same meanings as those in specification, salts thereof, solvates thereof, or prodrugs thereof binds to DP receptor and shows antagonistic activity for DP receptor. Thus, it is useful for prevention and/or treatment of diseases such as allergic disease (e.g., allergic rhinitis, allergic conjunctivitis, atopic dermatitis, bronchial asthma and food allergy), systemic mastocytosis, disorders accompanied by systemic mast cell activation, anaphylaxis shock, bronchoconstriction, urticaria, eczema, diseases accompanied by itch (e.g., atopic dermatitis and urticaria), diseases (e.g., cataract, retinal detachment, inflammation, infection and sleeping disorders) which is generated secondarily as a result of behavior accompanied by itch (e.g., scratching and beating), inflammation, chronic obstructive pulmonary diseases, ischemic reperfusion injury, cerebrovascular accident, chronic rheumatoid arthritis, pleurisy ulcerative colitis, etc. Since it specifically binds to DP receptor and binds weakly to other prostaglandins receptors, they can be pharmaceuticals having little side effect.
Novel phenylalanine derivatives
-
Page/Page column 33, (2010/02/14)
Specific phenylalanine derivatives and analogues thereof have an antagonistic activity to α4 integrin. They are used as therapeutic agents for various diseases concerning α4 integrin.
Structure-activity relationships of substituted benzothiophene-anthranilamide factor Xa inhibitors
Chou, Yuo-Ling,Davey, David D.,Eagen, Keith A.,Griedel, Brian D.,Karanjawala, Rushad,Phillips, Gary B.,Sacchi, Karna L.,Shaw, Kenneth J.,Wu, Shung C.,Lentz, Dao,Liang, Amy M.,Trinh, Lan,Morrissey, Michael M.,Kochanny, Monica J.
, p. 507 - 511 (2007/10/03)
Compound 1 was identified by high throughput screening as a novel, potent, non-amidine factor Xa inhibitor with good selectivity against thrombin and trypsin. A series of modifications of the three aromatic groups of 1 was investigated. Substitution of chlorine or bromine for fluorine on the aniline ring led to the discovery of subnanomolar factor Xa inhibitors. Positions on the anthranilic acid ring that can accommodate further substitution were also identified.
N-[(1-piperidinyl)alkyl]arylcarboxamide derivatives
-
, (2008/06/13)
Compounds of the class of N-[(1-piperidinyl)alkyl]arylcarboxamides, useful as antiemetic and psychotropic agents.