Welcome to LookChem.com Sign In|Join Free

CAS

  • or

589-63-9

Post Buying Request

589-63-9 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

589-63-9 Usage

Chemical Properties

Colorless clear liquid

Synthesis Reference(s)

Tetrahedron Letters, 19, p. 2345, 1978 DOI: 10.1016/S0040-4039(01)91532-1The Journal of Organic Chemistry, 49, p. 2288, 1984 DOI: 10.1021/jo00186a043

Check Digit Verification of cas no

The CAS Registry Mumber 589-63-9 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 5,8 and 9 respectively; the second part has 2 digits, 6 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 589-63:
(5*5)+(4*8)+(3*9)+(2*6)+(1*3)=99
99 % 10 = 9
So 589-63-9 is a valid CAS Registry Number.
InChI:InChI=1/C8H16O/c1-3-5-7-8(9)6-4-2/h3-7H2,1-2H3

589-63-9SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 12, 2017

Revision Date: Aug 12, 2017

1.Identification

1.1 GHS Product identifier

Product name octan-4-one

1.2 Other means of identification

Product number -
Other names Propyl n-butyl ketone

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:589-63-9 SDS

589-63-9Relevant articles and documents

Ligand effects in the stabilization of gold nanoparticles anchored on the surface of graphene: Implications in catalysis

Ventura-Espinosa, David,Martín, Santiago,García, Hermenegildo,Mata, Jose A.

, p. 113 - 120 (2021)

Gold nanoparticles (Au NPs) functionalized with N-heterocyclic carbene (NHC) ligands immobilized onto graphene are obtained via spontaneous decomposition of well-defined gold-NHC complexes by reduced graphene oxide (rGO) without reducing agents. NHC ligands are responsible for the formation of air-stable, crystalline and small (3.0–4-0 nm) Au NPs homogeneously distributed on the surface of graphene. The catalytic properties of three Au NPs functionalized with different ligands were tested in two benchmark reactions (hydration of alkynes and intramolecular hydroamination of alkynes). The results reveal a pronounced ligand effect on the stability of Au NPs on graphene, by acting as a bridge between them. The Au NPs functionalized with a NHC ligand lacking a polyaromatic group or having a naphthyl tag displayed limited stability and fast deactivation in the first run. On the contrary, the Au NPs functionalized with a NHC ligand containing a pyrenyl handle showed superior catalytic activity and can be recycled at least ten times. The particle size of the Au NPs is preserved after the recycling process indicating a high stability. These results illustrate the use of purposely designed ligands having affinity for both Au NPs and graphene to increase the stability of the hybrid catalyst.

Ncube et al.

, p. 2345 (1978)

The effects of metals and ligands on the oxidation of n-octane using iridium and rhodium “PNP” aminodiphosphine complexes

Naicker, Dunesha,Alapour, Saba,Friedrich, Holger B

, p. 282 - 289 (2020/12/01)

Ir and Rh “PNP” complexes with different ligands are utilized for the oxidation of n-octane. Based on the obtained conversion, selectivity, and the characterized recovered catalysts, it is found that the combination of Ir and the studied ligands does not promote the redox mechanism that is known to result in selective formation of oxo and peroxo compounds [desired species for C(1) activation]. Instead, they support a deeper oxidation mechanism, and thus higher selectivity for ketones and acids is obtained. In contrast, these ligands seem to tune the electron density around the Rh (in the Rh-PNP complexes), and thus result in a higher n-octane conversion and improved selectivity for the C(1) activated products, with minimized deeper oxidation, in comparison to Ir-PNP catalysts.

Method for preparing ketone compound from olefin

-

Paragraph 0035-0037, (2021/08/19)

The invention belongs to the technical field of organic chemical synthesis, and discloses a method for preparing a ketone compound from olefin by using an iron catalyst. According to the invention, the ligand and the iron salt form an iron catalyst in the on-site reaction, the raw materials in the formula are easy to obtain, and the synthesis is simple. By using the catalyst, olefin can be efficiently converted into ketone compounds, and compared with a palladium catalyst, the price is very low, and the catalyst is suitable for industrial application.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 589-63-9