Welcome to LookChem.com Sign In|Join Free

CAS

  • or

621-26-1

Post Buying Request

621-26-1 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

621-26-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 621-26-1 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 6,2 and 1 respectively; the second part has 2 digits, 2 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 621-26:
(5*6)+(4*2)+(3*1)+(2*2)+(1*6)=51
51 % 10 = 1
So 621-26-1 is a valid CAS Registry Number.

621-26-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3,3'-dimethylhydrazobenzene

1.2 Other means of identification

Product number -
Other names N,N'-di-m-tolyl-hydrazine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:621-26-1 SDS

621-26-1Relevant articles and documents

Visible-Light-Promoted Diboron-Mediated Transfer Hydrogenation of Azobenzenes to Hydrazobenzenes

Song, Menghui,Zhou, Hongyan,Wang, Ganggang,Ma, Ben,Jiang, Yajing,Yang, Jingya,Huo, Congde,Wang, Xi-Cun

, p. 4804 - 4811 (2021/04/06)

A visible-light-promoted transfer hydrogenation of azobenzenes has been developed. In the presence of B2pin2 and upon visible-light irradiation, the reactions proceeded smoothly in methanol at ambient temperature. The azobenzenes with diverse functional groups have been reduced to the corresponding hydrazobenzenes with a yield of up to 96%. Preliminary mechanistic studies indicated that the hydrogen atom comes from the solvent and the transformation is achieved through a radical pathway.

Visible-light-promoted oxidative dehydrogenation of hydrazobenzenes and transfer hydrogenation of azobenzenes

Wang, Xianya,Wang, Xianjin,Xia, Chungu,Wu, Lipeng

supporting information, p. 4189 - 4193 (2019/08/07)

Azo compounds are widely used in the pharmaceutical and chemical industries. Here, we report the use of a non-metal photo-redox catalyst, Eosin Y, to synthesize azo compounds from hydrazine derivatives. The use of visible-light with air as the oxidant makes this process sustainable and practical. Moreover, the visible-light-driven, photo-redox-catalyzed transfer hydrogenation of azobenzenes is compatible with a series of hydrogen donors such as phenyl hydrazine and cyclic amines. Compared with traditional (thermal/transition-metal) methods, our process avoids the issue of over-reduction to aniline, which extends the applicability of photo-redox catalysis and confirms it as a useful tool for synthetic organic chemistry.

Structurally and electronically modulated spin interaction of transient biradicals in two photon-gated stepwise photochromism

Yonekawa, Izumi,Mutoh, Katsuya,Kobayashi, Yoichi,Abe, Jiro

, p. 290 - 301 (2018/03/23)

The development of two-photon induced photochromic compounds is important for advanced photoresponsive materials. The utilization of the long-lived transient states or species for two-photon absorption is one of the efficient strategies to realize the advanced photochemical behavior beyond a one-photon photochemical reaction. We have synthesized bi-photochromic compounds composed of two photochromic phenoxyl-imidazolyl radical complex units. The biphotochromic compounds generate two biradical units when the two photochromic units absorb photons with a stepwise manner. The interaction between the two biradicals through the central bridging phenyl ring is the key feature to control the stepwise photochromic reaction. Here, we introduced aromatic spacers in order to modulate the distance and the dihedral angle between the biradical units. The color and the rate of the thermal back reaction of the stepwise photochromism can be regulated by the control of the central bridging part. These results give important insights to develop desirable advanced photoresponsive compounds.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 621-26-1