Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3-[(Aminoiminomethyl)amino]-4-methylbenzoic acid ethyl ester is a chemical with a specific purpose. Lookchem provides you with multiple data and supplier information of this chemical.

641569-95-1 Suppliers

Post Buying Request

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • 641569-95-1 Structure
  • Basic information

    1. Product Name: 3-[(Aminoiminomethyl)amino]-4-methylbenzoic acid ethyl ester
    2. Synonyms: 3-[(Aminoiminomethyl)amino]-4-methylbenzoic acid ethyl ester
    3. CAS NO:641569-95-1
    4. Molecular Formula:
    5. Molecular Weight: 221.259
    6. EINECS: N/A
    7. Product Categories: N/A
    8. Mol File: 641569-95-1.mol
  • Chemical Properties

    1. Melting Point: N/A
    2. Boiling Point: N/A
    3. Flash Point: N/A
    4. Appearance: N/A
    5. Density: N/A
    6. Refractive Index: N/A
    7. Storage Temp.: N/A
    8. Solubility: N/A
    9. CAS DataBase Reference: 3-[(Aminoiminomethyl)amino]-4-methylbenzoic acid ethyl ester(CAS DataBase Reference)
    10. NIST Chemistry Reference: 3-[(Aminoiminomethyl)amino]-4-methylbenzoic acid ethyl ester(641569-95-1)
    11. EPA Substance Registry System: 3-[(Aminoiminomethyl)amino]-4-methylbenzoic acid ethyl ester(641569-95-1)
  • Safety Data

    1. Hazard Codes: N/A
    2. Statements: N/A
    3. Safety Statements: N/A
    4. WGK Germany:
    5. RTECS:
    6. HazardClass: N/A
    7. PackingGroup: N/A
    8. Hazardous Substances Data: 641569-95-1(Hazardous Substances Data)

641569-95-1 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 641569-95-1 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 6,4,1,5,6 and 9 respectively; the second part has 2 digits, 9 and 5 respectively.
Calculate Digit Verification of CAS Registry Number 641569-95:
(8*6)+(7*4)+(6*1)+(5*5)+(4*6)+(3*9)+(2*9)+(1*5)=181
181 % 10 = 1
So 641569-95-1 is a valid CAS Registry Number.

641569-95-1SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name ethyl 3-guanidino-4-methylbenzoate

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:641569-95-1 SDS

641569-95-1Relevant articles and documents

Investigations into the potential role of metabolites on the anti-leukemic activity of imatinib, nilotinib and midostaurin

Manley, Paul W.

, p. 561 - 570 (2019/09/03)

The efficacy and side-effects of drugs do not just reflect the biochemical and pharmacodynamic properties of the parent compound, but often comprise of cooperative effects between the properties of the parent and active metabolites. Metabolites of imatinib, nilotinib and midostaurin have been synthesised and evaluated in assays to compare their properties as protein kinase inhibitors with the parent drugs. The N-desmethylmetabolite of imatinib is substantially less active than imatinib as a BCR-ABL1 kinase inhibitor, thus providing an explanation as to why patients producing high levels of this metabolite show a relatively low response rate in chronic myeloid leukaemia (CML) treatment. The hydroxymethylphenyl and N-oxide metabolites of imatinib and nilotinib are only weakly active as BCR-ABL1 inhibitors and are unlikely to play a role in the efficacy of either drug in CML. The 3-(R)-HO-metabolite of midostaurin shows appreciable accumulation following chronic drug administration and, in addition to mutant forms of FLT3, potently inhibits the PDPK1 and VEGFR2 kinases (IC50 values 100 nM), suggesting that it might contribute to drug efficacy in acute myeloid leukaemia patients. The case studies discussed here provide further examples of how the synthesis and characterisation of metabolites can make important contributions to understanding the clinical efficacy of drugs.

Design, synthesis and biological evaluation of pyridin-3-yl pyrimidines as potent Bcr-Abl inhibitors

Pan, Xiaoyan,Dong, Jinyun,Gao, Hongping,Wang, Fang,Zhang, Yanmin,Wang, Sicen,Zhang, Jie

, p. 592 - 599 (2014/05/06)

A series of pyridin-3-yl pyrimidines was synthesized and evaluated for their Bcr-Abl inhibitory and anticancer activity. The preliminary results indicated that some compounds were promising anticancer agents. Compounds A2, A8, and A9 exhibited potent Bcr-Abl inhibitory activity, suggesting that aniline containing halogen substituents might be important for biological activity. Molecular docking was carried out to investigate the binding mode of them with Bcr-Abl. Details of synthesis and SAR studies of these compounds are described. A series of phenylaminopyrimidines was designed and synthesized as potent Bcr-Abl inhibitors. The screening of these rationally designed compounds for antitumor activity had identified three candidate leads which could be further optimized to improve the anticancer activities.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 641569-95-1