Welcome to LookChem.com Sign In|Join Free
  • or

70288-86-7

Post Buying Request

70288-86-7 Suppliers

Recommended suppliersmore

Product FOB Price Min.Order Supply Ability Supplier
Pure USP 99% Ivermectin powder Ivermectin pharmaceutical for tablets Cas 70288-86-7
Cas No: 70288-86-7
USD $ 99.0-153.0 / Kilogram 1 Kilogram 55 Metric Ton/Month Xi'an Quanao Biotech Co., Ltd. Contact Supplier
High purity Ivermectin 98% TOP1 supplier in China
Cas No: 70288-86-7
No Data 100 Gram 1-1000 Metric Ton/Day Dayang Chem (Hangzhou) Co.,Ltd. Contact Supplier
cas 70288-86-7 high quality 99% EP BP door to door shipping from Factory Ivermectin
Cas No: 70288-86-7
No Data 1 Kilogram 1-100 Metric Ton/Month Hangzhou Fonlynn Health Technology Co., Ltd. Contact Supplier
competitive price Ivermectin EP/BP with GMP
Cas No: 70288-86-7
No Data 1 Kilogram 2 Metric Ton/Month Hangzhou Think Chemical Co. Ltd Contact Supplier
Hot Selling Raw Material CAS 70288-86-7 Ivermectin Powder
Cas No: 70288-86-7
USD $ 280.0-330.0 / Kilogram 1 Kilogram 5000 Kilogram/Month Xi'an Julong Bio-Tech Co., Ltd. Contact Supplier
Ivermectin 70288-86-7
Cas No: 70288-86-7
USD $ 10.0-10.0 / Kilogram 1 Kilogram 10000 Kilogram/Month HANWAYS CHEMPHARM CO.,LIMITED Contact Supplier
Hot Sale Veterinary Medicine 99% Ivermectin
Cas No: 70288-86-7
USD $ 30.0-30.0 / Kilogram 1 Kilogram 1 Metric Ton/Day DB BIOTECH CO., LTD Contact Supplier
Ivermectin/70288-86-7Ivermectin supplier
Cas No: 70288-86-7
No Data 10 Gram 1 Metric Ton/Day Qingdao Beluga Import and Export Co., LTD Contact Supplier
Ivermectin
Cas No: 70288-86-7
No Data No Data 5 Hangzhou J&H Chemical Co., Ltd. Contact Supplier
superior quality Factory Price CAS 70288-86-7 Free of Custom Safety Guaranteed with 100% Safe Delivery
Cas No: 70288-86-7
USD $ 10.0-20.0 / Kilogram 1 Kilogram 100 Kilogram/Day Wuhan HSD Technology Development Co., LTD Contact Supplier

70288-86-7 Usage

Veterinary Drugs and Treatments

Ivermectin is approved in horses for the control of: large strongyles (adult) (Strongylus vulgaris, S. edentatus, S. equinus, Triodontophorus spp.), small strongyles, pinworms (adults and 4th stage larva), ascarids (adults), hairworms (adults), large-mouth stomach worms (adults), neck threadworms (microfilaria), bots (oral and gastric stages), lungworms (adults and 4th stage larva), intestinal threadworms (adults), and summer sores (cutaneous 3rd stage larva) secondary to Hebronema or Draschia Spp. In cattle, ivermectin is approved for use in the control of gastrointestinal roundworms (adults and 4th stage larva), lungworms (adults and 4th stage larva), cattle grubs (parasitic stages), sucking lice, and mites (scabies). For a listing of individual species covered, refer to the product information. In swine, ivermectin is approved for use to treat GI roundworms, lungworms, lice, and mange mites. For a listing of individual species covered, refer to the product information. In reindeer, ivermectin is approved for use in the control of warbles. In American Bison, ivermectin is approved for use in the control of grubs. In dogs and cats, ivermectin is approved only for use as a preventative for heartworm. It has also been used as a microfilaricide, slow-kill adulticide, ectoparasiticide, and endoparasiticide.

Pharmacokinetics

Oral absorption: c. 60% Cmax 12 mg oral: c. 30–47 ng/mL after 4 h Plasma half-life: c. 12 h Volume of distribution: 46.9 L Plasma protein binding: 93% It is rapidly metabolized in the liver and the metabolites are excreted in the feces over about 12 days with minimal (<1%) urinary excretion. Highest concentrations occur in the liver and fat. Extremely small amounts are found in the brain.

Effects of ivermectin

Ivermectin is white or light yellow crystalline powder and soluble in methyl alcohol, ester and aromatic hydrocarbon but water. Ivermectin is a kind of antibiotic medicine which has a driving and killing effect on nematodes, insects and mites. Injection and troche which are made from ivermectin are mainly used in the treatments of livestock’s gastrointestinal nematode, bovine hypodermosis, calf fly maggot, sheep nasal fly maggot, and scabies of sheep and pigs. Besides, ivermectin can also be available for the treatment of plant-parasitic nematodes(ascarid, lungworm) in poultry. In addition, it can also be made into agricultural insecticide to kill mite, plutella xylostella, cabbage caterpillar, leaf miner, phylloxera and nematode which are widely parasitic in plants. The most outstanding feature of this insecticide is that it has little side effects and can drive and kill many kinds of parasites both internally and externally at a time. The above information is edited by the Chemicalbook Bai Linlin.

Uses

1. Ivermectin is available for controlling and treating onchocerca volvulus, and its untoward effect is lower than that of carbamazine. 2. Ivermectin can be used as a kind of antiphrastic drug and has an anthelmintic activity towards nematode, hookworm, roundworm, worm, insect and mite.

Clinical Use

Onchocerciasis Non-disseminated strongyloidiasis Lymphatic filariasis (in combination with albendazole) Scabies If the patient is harboring Asc. lumbricoides, the worms will be passed in the feces. Head lice will also be killed, which is very much welcomed by the treated patients. Ivermectin has been widely used in the veterinary field, where use is also made of its effect on ectoparasites.

Contraindications and precautions

Experience of the drug is lacking for children under 5 years of age. Since the drug acts by potentiating GABA, there is a concern that CNS effects may be seen in humans whose bloodbrain barrier is impaired (e.g. by meningitis, trypanosomiasis). Ivermectin does not cross the blood-brain barrier; however, severe CNS toxicity has been reported from animals without a blood-brain barrier (e.g. collie dog) . The relevance of this in humans is not known.

Reference

1. Campbell WC, Fisher MH, Stapley EO, Albers-Sch?nberg G, Jacob TA (1983). Ivermectin: apotent new antiparasitic agent. Science, 212, 823–828. 2. Campbell WC (1991). Ivermectin as an antiparasitic agent for use in humans. Annu Rev Microbiol,45, 445–474. 3. Goa KL, McTavish D, Clissold SP (1991). Ivermectin: A review of its antifilarial activity,pharmacokinetic properties and clinical trials in onchocerciasis. Drugs, 42, 640–658. 4. Awadzi K, Dadzie KY, Schultz-Key H, Haddock DRW, Gilles HM, Aziz MA (1984). Ivermectinin onchocerciasis. Lancet, 2, 291. 5. Schultz-Key H (1990). Observations on the reproductive biology of Onchocerca volvulus. ActaLeiden, 59, 27–43. 6. Taylor HR, Pacqué M, Munoz B, Greene BM (1990). Impact of mass treatment of onchocerciasiswith ivermectin on the transmission of infection. Science, 250, 116–118. 7. Cupp EW, Bernardo MJ, Kiszewski AE, Collins RC, Taylor HR, Aziz MA, Greene BM (1986).The effects of ivermectin on transmission of Onchocerca volvulus. Science, 231, 740–742. 8. Pong S-S, Wang CC, Fritz LC (1980). Studies on the mechanism of action of avermectin Bla: stimulationof release of gamma-aminobutyric acid from brain synaptosomes. J Neurochem, 34, 351–358. 9. Pacque M, Munoz B, Poetschke G, Foose J, Greene B, Taylor H (1990). Pregnancy outcome afterinadvertent ivermectin treatment during community-based distribution. Lancet, 336, 1486–1489. 10. Whitworth JAG (1992). Drug of the month: ivermectin. Tropical doctor, 22, 163–164. 11. De Sole G, Remme J, Awadzi K, Accorsi S, Alley ES, Ba O, Dadzie KY, Giese J, Karam M,Keita FM (1989). Adverse reactions after large-scale treatment of onchocerciasis with ivermectin:combined study from eight community trials. Bull WHO, 67, 707–719. 12. Whitworth JAG, Morgan D, Maude GH, Taylor DW (1988). Community-based treatment withivermectin. Lancet, 2 97–98. 13. Homeida MM, Bagi IA, Ghalib HW, el Sheikh HE, Ismail A, Yousif MA, Sulieman S, Ali HM,Bennett JL, Williams J (1988). Prolongation of prothrombin time with ivermectin. Lancet, i,1346–1347. 14. Pacque MC, Munoz B, White AT, Williams PN, Greene BM, Taylor HR (1989). Ivermectin andprothrombin time. Lancet, 1, 1140. 15. Whitworth JAG, Hay CRM, McNicholas AM, Morgan D, Maude GH, Taylor DW (1992).Coagulation abnormalities and ivermectin. Ann Trop Med Parasitol, 86, 301–395. 16. Richards Jr FO, McNeely MB, Bryan RT, Eberhard ML, McNeely DF, Lamie PJ, Spencer HC(1989). Ivermectin and prothrombin time. Lancet, i, 1139–1140. 17. Campbell WC, Benz GW (1984). Ivermectin: a review of efficacy and safety. J Vet PharmacolTher, 7, 1–16.

Uses

antiparasitic

Uses

Semi-synthetic derivative of Abamectin; consists of a mixture of not less than 80% component B1a and not more than 20% component B1b. Antihelmintic (Onchocerca)

Side effects

About 1.5 million people, mainly in West Africa, have now been treated with ivermectin, and all the evidence indicates that it is a safe drug, which is suitable for large scale treatment programmes[9,10, 11]. Side effects reported include fever, itching, dizziness, oedema, mild Mazzotti reaction, and minimal ocular inflammation in patients with eye involvement. The side effects usually occur during the first 3 days after treatment and are dose dependent. The reported incidences of side effects vary. In one review [11], which covered 50,929 patients who had been treated with ivermectin, around 9% were reported to have suffered from side effects. The most frequent reaction was symptomatic postural hypotension. The authors reported that the incidence of side effects was directly proportional to the microfilarial density in the skin[11]. In hyperendemic areas, a much higher incidence of adverse reactions may be seen [12]. Homeida et al. [13], reported a high incidence of prolongation of the prothrombin time in Sudanese patients treated with ivermectin, but this has not been confirmed in other studies [14–16].

Mechanism of action

Two mechanisms of action are thought to be involved in the action of IVM. The first is an indirect action in which motility of microfalaria is reduced, which in turn allows cytotoxic cells of the host to adhere to the parasite, resulting in elimination from the host. This action may occur by virtue of the ability of IVM to act either as a γ-aminobutyric acid (GABA) agonist or as an inducer of chloride ion influx, leading to hyperpolarization and muscle paralysis. The chloride ion influx appears to be the more plausible mechanism. Recently, it has been shown that IVM binds irreversibly to the glutamate-gated chloride channel of the nematode Haemonchus contortus, whereas the channel is in an open conformation. The binding then remains locked in the open conformation, allowing ions to cross the membrane, leading to the paralytic action of IVM. The result of this action is a rapid decrease in microfilarial concentrations. A second action of IVM leads to the degeneration of microfilariae in utero. This action would result in fewer microfilariae being released from the female worms, and it occurs over a longer period of time. The presence of degenerated microfilariae in utero prevents further fertilization and production of microfilariae.

Chemical Properties

Crystalline Solid

Chemical properties

Ivermectin contains at least 80% of 22,23-dihydroavermectin B1a and less than 20%22,23-dihydroavermectin B1b. It is white powder. [α]D+71.5°±3°(C=0.755,chloroform). Maximum absorption(methyl alcohol) of UV is 238,245 nm(ε27100,30100). The water solubility is about 4μg/ml and it is easily soluble in methyl ethyl ketone, propylene glycol or polypropylene glycol, but not in saturated hydrocarbon, for example cyclohexane. B1a:[71827-03-7]. Ethyl alcohol-water crystallization, melting point: 155~157℃.

Toxicity evaluation

Ivermectin toxicity has been reported in collie dogs and may be due to increased penetration of drug across the blood-brain barrier to the central nervous system (91) and/or the release of γ -aminobutyric acid in the central nervous system (92). Vomiting, salivation, diarrhea, melena, and death have resulted when dogs with Dirofilaria immitis microfilariae were treated with ivermectin (93,94). Adverse reactions in horses with Onchocerca cervicalis microfilariae at the time of therapy may manifest as transient, ventral, subcutaneous edema (95).

Instruction of ivermectin

[Pharmacologic action] Ivermectin has killing effects on microfilaria, but its exact mechanism is not clear. It can be used as agonist for neurotransmitter γ-tyrosine(GABA) to break the transfer process of synapses in the central nervous system neurons mediated by GABA, which can lead to death of polypide by paralyzing its nervous system. As for adult insects, ivermectin doesn’t work, but it can affect the normal development of microfilariae of onchocerca volvulus in the female uterus, and can inhibit the release from the pregnant worm palace. Ivermectin has slow and persistent effect on microfilaria compared with diethylcarbamazine. It can quickly reduce the number of microfilariae of patients with the skin. However, it has a relatively slow effect on the larva of patients’ cornea and anterior chamber of eyes, therefore the number of larva in this area declines rather slow. [Pharmacokinetics]After taking the medicine orally, blood concentration will reach the peak in 4 hours and T1/2 in 10 hours. Animal experiments showed only l~2% of oral doses appears in the urine in the form of original drug and the others is excreted with excrement. The drug concentration in the liver and adipose is very high, but cannot penetrate the blood brain barrier, while in the nerve cells including GABA the concentration is rather low, hence we rarely see the response of central nervous system after taking medicine. [Adaptation disease]the main medicine of treating onchocercosis. [Usage and dosage] Take the medicine orally one hour before the meal. The usual dose of onchocercosis treatment: 0.15-0.2mg/kg according to the weight, every 6-12 month at a time, depending on the symptoms and the reappear time of microfilaria. It can prevent the further development of ocular disorders(mostly caused by microfilaria), but this can’t be a radical treatment, because it’s inability to kill adult insects. [Preparation and specification] Ivermectin tablet 6mg [Untoward effects] Non-infected people and other Mammalian species are well tolerant towards this product. Symptoms like drowsiness, ataxia, mydriasis, tremble and even death will appear when given mega dose of this product to animals. The patients who suffer from onchocercosis may have transience and slight side effect after taking this medicine, most of which are rash and pruritus(caused by the death of microfilaria in the skin), lymphadenopathy(gall, seen in the neck, armpit, and inguen). It is rare to see the symptoms such as swirl, postural hypotension(faint), radiation, headache, joint sore, weakness and so on. There is not much change in ocular lesions. Occasionally, we can see the change of electrocardiogram but the significance is unclear. This product has no carcinogenic and teratogenic effect.

Botanical pesticide of ivermectin

Ivermectin is a kind of botanical pesticide which is made of cynanchum komarovii, sophora alopecuroides and many other plants and Chinese herbal pieces through grinding, dissolving, adding promoters and penetrant and processing the mixtures. Its action mechanism is mainly based on contact poisoning with stomach toxicity as an complementary, which has a promoting effect on plant growth. It can be used to prevent and kill all kinds of aphids and defoliators. If diluted with water to 1000~2000 times and spayed, its control effect can reach above 98%. Ivermectin is a new generation of botanical pesticide that is low toxicity, low residual and has no hazard to people, livestock and environment. The insecticidal mechanism of ivermectin is to inhibit the synthesis of chitin of insect epicutile. The main component of chlorbenzuron is stomach poison, but it can also intrude into insect epicutile and take effect. The prevention and treatment of defoliator has many advantages such as special action mechanism, good effect, long residual period, low cost, tolerant to rain shower, not easy to generate insecticide resistance and safe for plants, human, livestock and environment.

Pharmaceutical Applications

A mixture of two closely related semisynthetic derivatives of avermectins, a complex of macrocyclic lactone antibiotics produced by Streptomyces avermitilis. In commercial preparations the ratio of the two components, dihydroavermectin B1a and dihydroavermectin B1b, are present within the limits 80–90% and 10–20%, respectively.

Pharmacology and mechanism of action

Ivermectin belongs to a class of substances known as the avermectines. These are macrocylic lactones produced by fermentation of an actinomycete, Streptomyces avermitilis. Ivermectin is a broad spectrum agent active against nematodes and arthropods in domestic animals and is thus widely used in veterinary medicine [1]. The drug was first introduced in man in 1981. It has been shown to be effective against a wide range of nematodes such as Strongyloides sp., Trichuris trichiura, Enterobius vermicularis, Ascaris lumbricoides, hook worms and Wuchereria bancrofti. However, it has no effect against liver flukes and cestodes [2]. Presently it is regarded as the drug of choice in onchocerciasis. It is a potent microfilaricide, but it does not possess any significant macrofilaricidal effect[3]. Between 2 to 3 days afteroral administration, microfilariae in the skin start to disappear rapidly, while those in the cornea and the anterior chamber of the eyes are eliminated more gradually. This is an effect which lasts for up to 12 months [4–5]. One month after administration, the microfilariae in the uterus of the worms are also affected where they get trapped and eventually degenerate and get resorbed[5]. This long-term suppression of microfilariae has potential usefulness in interrupting the transmission of the disease [6,7]. The mechanism of action of ivermectin against onchocerciasis is not clearly understood, but it is presumed to be a GABA-agonist. In susceptible organisms the drug acts by potentiating the release of gamma-aminobutyric acid (GABA) at postsynaptic sites on the neuromuscular junction rendering the nematode paralysed [8].

Clinical Use

Ivermectin has broad-spectrum activity in that it can affect nematodes, insects, and acarine parasites. It is the drug of choice in onchocerciasis and is quite useful in the treatment of other forms of filariasis, strongyloidiasis, ascariasis, loiasis, and cutaneous larva migrans. It is also highly active against various mites. It is the drug of choice in treating humans infected with Onchocerca volvulus, acting as a microfilaricidal drug against the skin-dwelling larvae (microfilaria). Annual treatment can prevent blindness from ocular onchocerciasis. Ivermectin is clearly more effective than diethylcarbamazine in bancroftian filariasis, and it reduces microfilaremia to near zero levels. In brugian filariasis diethylcarbamazine- induced clearance may be superior. It also is used to treat cutaneous larva migrans and disseminated strongyloidiasis. Its safe use in pregnancy has not been fully established.

Side effects

The side effects are minimal, with pruritus, fever, and tender lymph nodes occasionally seen. The side effects are considerably less than those associated with diethylcarbamazine administration.

Production methods

Under normal pressure and at room temperature, ivermectin can be obtained through the corresponding compounds (I) in benzene hydrogenated and catalyzed by the three (triphenylphosphine) rhodium chloride.

Ivermectin poisoning

Ivermectin also called Ivomec, is a kind of medicine that has a good effect on mite disease treatment.It will cause poisoning if were overcommit ted. The symptoms of ivermectin poisoning are as follows: vomiting, accelerated breathing ,weakness and paralysis in arms and legs, and congestive heart failure that would cause death. Rescue : Just take orally mung bean licorice drink detoxification with 10% of glucose and inject dexamethasone when necessary.

Uses

Positive allosteric modulator of α7 neuronal nicotinic acetylcholine receptor; also modulates glutamate-GABA-activated chloride channels.

Interactions

There are no reports of harmful drug interactions, but theoretically, the drug may potentiate the effects of other drugs that are agonists of the GABA receptors (e.g. benzodiazepines and sodium valproate).

Preparations

Mectizan? (Merck Sharp & Dohme). Tablets 6 mg.

Indications

Ivermectin is the drug of choice against onchocerciasis. It is, however, an expensive drug and its distribution is still restricted. The role of ivermectin in lymphatic filariasis is not yet well investigated.

Metabolism

Ivermectin is rapidly absorbed, is bound to a great extent to plasma protein, and is excreted in the urine or feces either unchanged or as the 3′-O-demethyl-22,23-dihydroavermectin B1α or as the dihydroavermectin B1α monosaccharide. The absorption of IVM is significantly affected by the presence of alcohol. Administration of IVM as an alcoholic solution may result in as much as a 100% increase in absorption.

Description

Ivermectin is an antiparasitic agent effective in the treatment of onchocerciasis, or "river blindness". Since ivermectin acts to prevent the adult worm from producing microfilariae, it needs to be administered only once or twice a year.

Therapeutic Function

Antiprotozoal

Preparation

The synthesis of ivermectin involves the hydrogenation of the naturally occurring avermectin B1 (abamectin) at the double bond linking C-22 and C-23. This results in a mixture of two homologues, 22, 23-dihydroavermectin B1a (H2B1a) and 22, 23-dihydroavermectin B1b (H2 B1b). The a- and b- nomenclature refers to the presence on C-25, of either a secondary butyl side chain or an isopropyl group, respectively. The biological activities of H2B1a and H2B1b are similar. Large-scale separation of the two homologues is not practical, and, hence, ivermectin is marketed as a mixture of H2 B1a (>80%) and H2 B1b (<20%).

Brand name

Stromectol (Merck);Mectizan.

Clinical Use

Ivermectin (Cardomec, Eqvalan, Ivomec) is a mixtureof 22,23-dihydro derivatives of avermectins B1a and B1bprepared by catalytic hydrogenation. Avermectins aremembers of a family of structurally complex antibioticsproduced by fermentation with a strain of Streptomycesavermitilis. Their discovery resulted from an intensivescreening of cultures for anthelmintic agents from naturalsources. Ivermectin is active in low dosage against awide variety of nematodes and arthropods that parasitizeanimals.Ivermectin has achieved widespread use in veterinarypractice in the United States and many countries throughoutthe world for the control of endoparasites and ectoparasitesin domestic animals. It has been found effective forthe treatment of onchocerciasis (“river blindness”) in humans, an important disease caused by the roundwormOncocerca volvulus, prevalent in West and Central Africa,the Middle East, and South and Central America.Ivermectin destroys the microfilariae, immature forms ofthe nematode, which create the skin and tissue nodules thatare characteristic of the infestation and can lead to blindness.It also inhibits the release of microfilariae by theadult worms living in the host. Studies on the mechanismof action of ivermectin indicate that it blocks interneuron–motor neuron transmission in nematodes by stimulatingthe release of the inhibitory neurotransmitter GABA.The drug has been made available by the manufacturer ona humanitarian basis to qualified treatment programsthrough the World Health Organization.

Manufacturing Process

Avermectin is produced by biotechnological methods with the aid of Streptomyces avermitilis.Preparation of Catalyst IRhodium trichloride trihydrate (1.00 g, 3.80 mmol) was dissolved in water (5.0 ml) with heating (70°C). A solution of triphenylphosphine (1.95 g, 7.43 mmol) in acetone (25.0 ml) was then added under a nitrogen atmosphere in the course of 20 min. After 10 min hydrazine hydrate (1.90 ml; 39.09 mmol) was added with stirring and the mixture was heated at reflux temperature for 3 hours, then kept at 45°C for a further 1 hour. The crystalline solid was filtered off under nitrogen and washed with a little acetone and then with diethyl ether. 1.05 g of an orange-coloured solid were obtained.Hydrogenation with catalyst IThe catalyst (10 mg) was dissolved in toluene (25 ml) and added under argon to the solution of a mixture (1.1 g) of avermectin B1a (96%) and avermectin B1b (4%) and of 100 mg of triphenylphosphine in toluene (25 ml) in a stainless steel autoclave. This starting material was then hydrogenated at 88°C under a hydrogen pressure of 20 bar with stirring of the solution. After 10 hours, HPLC analysis revealed a content of 86% dihydro-avermectin B1a and of 4 % dihydroavermectin B1b, and also of 3% tetrahydroavermectin B1a.Preparation of Catalyst IIUnder an atmosphere of argon, a mixture of 7.5 mg of rhodium trichloride, 30.0 mg of tris-(hexylphenyl)-phosphine, 3 ml of acetone and 15 ml of hydrazine hydrate is heated with stirring and reflux cooling for 4 hours.Hydrogenation with catalyst IIThe catalyst is added to a solution of 4.3 g of avermectin (B1a and B1b mixture) in 25 ml of a mixture of acetone and cyclohexane in a ratio of 2:1. After addition of 51.4 mg of tris-(mexylphenyl)phosphine, the hydrogenation is carried out in a steel autoclave at a hydrogen pressure 5 bar and at 88°C. After a hydrogenation time of 4 hours, 8.9% of starting material, 89.9% of ivermectin (B1a and B1b mixture), tetrahydroavermectin content <0.1% was obtained (according to HPLC analysis).Removing of the catalyst systemThe crude product after distillative removal of the solvent mixture, dissolved in a mixture of 35 ml of methanol and 20 ml of water and this solution is extracted with 25 ml of cyclohexane in a separating funnel. The phases are separated and concentrated under reduced pressure. The extraction is repeated twice in the same manner.

Originator

Merck (USA)

Antimicrobial activity

It is also active against O. volvulus and other filarial worms, but the effect is chiefly directed against the larval forms (microfilariae). Uniquely among anthelmintic agents it exhibits activity against some ectoparasites, including Sarcoptes scabiei.

Uses

beta-lactamase inhibitor; antibiotic

Side effects

In the treatment of onchocerciasis mild Mazzotti-type reactions occur, with occasional neurological problems. Although it is highly effective against L. loa, care must be taken to avoid treating patients with high microfilarial counts: there is one report of a patient with a concomitant L. loa infection who died when treated for onchocerciasis. Mild gastrointestinal and nervous system signs may occur following treatment for strongyloidiasis.

Biological Activity

Positive allosteric modulator of the α 7 neuronal nicotinic acetylcholine receptor and the purinergic P2X 4 receptor. Antihelmintic. Also modulates glutamate- and GABA-activated chloride channels. Potentiates glycine-gated currents at low concentrations (30 nM).

Indications

Ivermectin (Mectizan) acts on parasite-specific inhibitory glutamate-gated chloride channels that are phylogenetically related to vertebrate GABA-gated chloride channels. Ivermectin causes hyperpolarization of the parasite cell membrane and muscle paralysis.At higher doses it can potentiate GABA-gated chloride channels. It does not cross the blood-brain barrier and therefore has no paralytic action in mammals, since GABA-regulated transmission occurs only in the central nervous system (CNS). Ivermectin is administered by the oral and subcutaneous routes. It is rapidly absorbed. Most of the drug is excreted unaltered in the feces. The half-life is approximately 12 hours.
InChI:InChI=1/C48H74O14.C47H72O14/c1-11-25(2)43-28(5)17-18-47(62-43)23-34-20-33(61-47)16-15-27(4)42(26(3)13-12-14-32-24-55-45-40(49)29(6)19-35(46(51)58-34)48(32,45)52)59-39-22-37(54-10)44(31(8)57-39)60-38-21-36(53-9)41(50)30(7)56-38;1-24(2)41-27(5)16-17-46(61-41)22-33-19-32(60-46)15-14-26(4)42(25(3)12-11-13-31-23-54-44-39(48)28(6)18-34(45(50)57-33)47(31,44)51)58-38-21-36(53-10)43(30(8)56-38)59-37-20-35(52-9)40(49)29(7)55-37/h12-15,19,25-26,28,30-31,33-45,49-50,52H,11,16-18,20-24H2,1-10H3;11-14,18,24-25,27,29-30,32-44,48-49,51H,15-17,19-23H2,1-10H3/b13-12+,27-15+,32-14+;12-11+,26-14+,31-13+/t25?,26-,28-,30-,31-,33+,34?,35-,36-,37-,38?,39-,40+,41-,42-,43+,44-,45+,47+,48+;25-,27-,29-,30-,32+,33?,34-,35-,36-,37?,38-,39+,40-,41+,42-,43-,44+,46+,47+/m00/s1

70288-86-7 Well-known Company Product Price

Brand (Code)Product description CAS number Packaging Price Detail
Sigma (I8898)  Ivermectin   70288-86-7 I8898-250MG 307.71CNY Detail
Sigma (I8898)  Ivermectin   70288-86-7 I8898-1G 913.77CNY Detail
Sigma-Aldrich (I8000010)  Ivermectin  European Pharmacopoeia (EP) Reference Standard 70288-86-7 I8000010 1,880.19CNY Detail
USP (1354309)  Ivermectin  United States Pharmacopeia (USP) Reference Standard 70288-86-7 1354309-200MG 4,662.45CNY Detail

70288-86-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 16, 2017

Revision Date: Aug 16, 2017

1.Identification

1.1 GHS Product identifier

Product name ivermectin

1.2 Other means of identification

Product number -
Other names Ivermecti

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Veterinary Drug: ANTHELMINTHIC_AGENT
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:70288-86-7 SDS

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 70288-86-7