Welcome to LookChem.com Sign In|Join Free

CAS

  • or

770-23-0

Post Buying Request

770-23-0 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

770-23-0 Usage

Chemical compound

2-Propenal, 3-(3-chlorophenyl)-

Classification

α,β-unsaturated aldehyde

Physical properties

yellowish liquid, sparingly soluble in water

Main use

intermediate in the production of pharmaceuticals and agricultural chemicals

Toxic effects

potential irritant to skin, eyes, and respiratory system

Safety precautions

handle with caution, follow safety guidelines and regulations

Check Digit Verification of cas no

The CAS Registry Mumber 770-23-0 includes 6 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 3 digits, 7,7 and 0 respectively; the second part has 2 digits, 2 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 770-23:
(5*7)+(4*7)+(3*0)+(2*2)+(1*3)=70
70 % 10 = 0
So 770-23-0 is a valid CAS Registry Number.

770-23-0SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 17, 2017

Revision Date: Aug 17, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-(3-chlorophenyl)acrylaldehyde

1.2 Other means of identification

Product number -
Other names m-chlorocinnamaldehyde

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:770-23-0 SDS

770-23-0Relevant articles and documents

Method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and diphosphine ligand used in method

-

Paragraph 0146-0148, (2021/05/29)

The invention discloses a method for preparing olefine aldehyde by catalyzing terminal alkyne or terminal conjugated eneyne and a diphosphine ligand used in the method. According to the invention, indole-substituted phosphoramidite diphosphine ligand which is stable in air and insensitive to light is synthesized by utilizing a continuous one-pot method, and the indole-substituted phosphoramidite diphosphine ligand and a rhodium catalyst are used for jointly catalyzing to successfully achieve a hydroformylation reaction of aromatic terminal alkyne and terminal conjugated eneyne under the condition of synthesis gas for the first time, so that an olefine aldehyde structure compound can be rapidly and massively prepared, and particularly, a polyolefine aldehyde structure compound which is more difficult to synthesize in the prior art can be easily prepared and synthesized, and a novel method is provided for synthesis and modification of drug molecules, intermediates and chemical products.

Dramatic Effect of γ-Heteroatom Dienolate Substituents on Counterion Assisted Asymmetric Anionic Amino-Cope Reaction Cascades

Das, Pradipta,Delost, Michael D.,Qureshi, Munaum H.,Bao, Jianhua,Fell, Jason S.,Houk, Kendall N.,Njardarson, Jon T.

supporting information, p. 5793 - 5804 (2021/05/07)

We report a dramatic effect on product outcomes of the lithium ion enabled amino-Cope-like anionic asymmetric cascade when different γ-dienolate heteroatom substituents are employed. For dienolates with azide, thiomethyl, and trifluoromethylthiol substituents, a Mannich/amino-Cope/cyclization cascade ensues to form chiral cyclohexenone products with two new stereocenters in an anti-relationship. For fluoride-substituted nucleophiles, a Mannich/amino-Cope cascade proceeds to afford chiral acyclic products with two new stereocenters in a syn-relationship. Bromide- and chloride-substituted nucleophiles appear to proceed via the same pathway as the fluoride albeit with the added twist of a 3-exo-trig cyclization to yield chiral cyclopropane products with three stereocenters. When this same class of nucleophiles is substituted with a γ-nitro group, the Mannich-initiated cascade is now diverted to a β-lactam product instead of the amino-Cope pathway. These anionic asymmetric cascades are solvent- and counterion-dependent, with a lithium counterion being essential in combination with etheral solvents such as MTBE and CPME. By altering the geometry of the imine double bond from E to Z, the configurations at the R1 and X stereocenters are flipped. Mechanistic, computational, substituent, and counterion studies suggest that these cascades proceed via a common Mannich-product intermediate, which then proceeds via either a chair (X = N3, SMe, or SCF3) or boat-like (X = F, Cl, or Br) transition state to afford amino-Cope-like products or β-lactam in the case of X = NO2.

Selective Rhodium-Catalyzed Hydroformylation of Terminal Arylalkynes and Conjugated Enynes to (Poly)enals Enabled by a π-Acceptor Biphosphoramidite Ligand

Zhao, Jiangui,Zheng, Xueli,Tao, Shaokun,Zhu, Yuxin,Yi, Jiwei,Tang, Songbai,Li, Ruixiang,Chen, Hua,Fu, Haiyan,Yuan, Maolin

supporting information, p. 6067 - 6072 (2021/08/16)

The hydroformylation of terminal arylalkynes and enynes offers a straightforward synthetic route to the valuable (poly)enals. However, the hydroformylation of terminal alkynes has remained a long-standing challenge. Herein, an efficient and selective Rh-catalyzed hydroformylation of terminal arylalkynes and conjugated enynes has been achieved by using a new stable biphosphoramidite ligand with strong π-acceptor capacity, which affords various important E-(poly)enals in good yields with excellent chemo- and regioselectivity at low temperatures and low syngas pressures.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 770-23-0