Welcome to LookChem.com Sign In|Join Free

CAS

  • or

81739-40-4

Post Buying Request

81739-40-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

81739-40-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 81739-40-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 8,1,7,3 and 9 respectively; the second part has 2 digits, 4 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 81739-40:
(7*8)+(6*1)+(5*7)+(4*3)+(3*9)+(2*4)+(1*0)=144
144 % 10 = 4
So 81739-40-4 is a valid CAS Registry Number.
InChI:InChI=1/C7H12N2O4S/c1-4(10)8-5(6(11)12)7(2,3)14-9-13/h5H,1-3H3,(H,8,10)(H,11,12)/t5-/m1/s1

81739-40-4SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name (2R)-2-acetamido-3-methyl-3-nitrososulfanylbutanoic acid

1.2 Other means of identification

Product number -
Other names S-Nitroso-N-acetylpenicillamine

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:81739-40-4 SDS

81739-40-4Relevant articles and documents

Versatile new reagent for nitrosation under mild conditions

Galloway, Jordan D.,Sarabia, Cristian,Fettinger, James C.,Hratchian, Hrant P.,Baxter, Ryan D.

supporting information, p. 3253 - 3258 (2021/05/06)

Here we report a new chemical reagent for transnitrosation under mild experimental conditions. This new reagent is stable to air and moisture across a broad range of temperatures and is effective for transnitrosation in multiple solvents. Compared with traditional nitrosation methods, our reagent shows high functional group tolerance for substrates that are susceptible to oxidation or reversible transnitrosation. Several challenging nitroso compounds are accessed here for the first time, including 15N isotopologues. X-ray data confirm that two rotational isomers of the reagent are configurationally stable at room temperature, although only one isomer is effective for transnitrosation. Computational analysis describes the energetics of rotamer interconversion, including interesting geometry-dependent hybridization effects.

Nitric oxide-releasing packaging membranes

-

, (2019/12/25)

Biodegradable composite membranes with antimicrobial properties consisting of nanocellulose fibrils, chitosan, and S-Nitroso-N-acetylpenicillamine (SNAP) were developed and tested for food packaging applications. Nitric oxide donor, SNAP was encapsulated into completely dispersed chitosan in 100 mL, 0.1N acetic acid and was thoroughly mixed with nanocellulose fibrils (CNF) to produce a composite membrane. The fabricated membranes had a uniform dispersion of chitosan and SNAP within the nanocellulose fibrils, which was confirmed through Scanning Electron Microscopy (SEM) micrographs and chemiluminescence nitric oxide analyzer. The membranes prepared without SNAP showed lower water vapor permeability than that of the membranes with SNAP. The addition of SNAP resulted in a decrease in the Young's modulus for both 2-layer and 3-layer membrane configurations. Antimicrobial property evaluation of SNAP incorporated membranes showed an effective zone of inhibition against bacterial strains of Enterococcus faecalis, Staphylococcus aureus, and Listeria monocytogenes and demonstrated its potential applications for food packaging.

Reduction in thrombosis and bacterial adhesion with 7 day implantation of S-nitroso-N-acetylpenicillamine (SNAP)-doped Elast-eon E2As catheters in sheep

Brisbois, Elizabeth J.,Davis, Ryan P.,Jones, Anna M.,Major, Terry C.,Bartlett, Robert H.,Meyerhoff, Mark E.,Handa, Hitesh

, p. 1639 - 1645 (2015/03/04)

Thrombosis and infection are two common problems associated with blood-contacting medical devices such as catheters. Nitric oxide (NO) is known to be a potent antimicrobial agent as well as an inhibitor of platelet activation and adhesion. Healthy endothelial cells that line the inner walls of all blood vessels exhibit a NO flux of 0.5-4 × 10-10 mol cm-2 min-1 that helps prevent thrombosis. Materials with a NO flux that is equivalent to this level are expected to exhibit similar anti-thrombotic properties. In this study, NO-releasing catheters were fabricated by incorporating S-nitroso-N-acetylpenicillamine (SNAP) in the Elast-eon E2As polymer. The SNAP/E2As catheters release physiological levels of NO for up to 20 days, as measured by chemiluminescence. Furthermore, SNAP is stable in the E2As polymer, retaining 89% of the initial SNAP after ethylene oxide (EO) sterilization. The SNAP/E2As and E2As control catheters were implanted in sheep veins for 7 days to examine the effect on thrombosis and bacterial adhesion. The SNAP/E2As catheters reduced the thrombus area when compared to the control (1.56 ± 0.76 and 5.06 ± 1.44 cm2, respectively). A 90% reduction in bacterial adhesion was also observed for the SNAP/E2As catheters as compared to the controls. The results suggest that the SNAP/E2As polymer has the potential to improve the hemocompatibility and bactericidal activity of intravascular catheters, as well as other blood-contacting medical devices (e.g., vascular grafts, extracorporeal circuits). This journal is

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 81739-40-4