Welcome to LookChem.com Sign In|Join Free

CAS

  • or

875669-69-5

Post Buying Request

875669-69-5 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

875669-69-5 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 875669-69-5 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 8,7,5,6,6 and 9 respectively; the second part has 2 digits, 6 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 875669-69:
(8*8)+(7*7)+(6*5)+(5*6)+(4*6)+(3*9)+(2*6)+(1*9)=245
245 % 10 = 5
So 875669-69-5 is a valid CAS Registry Number.

875669-69-5Relevant articles and documents

pH rate profiles of FnY356-R2s (n = 2, 3, 4) in Escherichia coli ribonucleotide reductase: Evidence that Y356 is a redox-active amino acid along the radical propagation pathway

Seyedsayamdost, Mohammad R.,Yee, Cyril S.,Reece, Steven Y.,Nocera, Daniel G.,Stubbe, JoAnne

, p. 1562 - 1568 (2007/10/03)

The Escherichia coli ribonucleotide reductase (RNR), composed of two subunits (R1 and R2), catalyzes the conversion of nucleotides to deoxynucleotides. Substrate reduction requires that a tyrosyl radical (Y 122?) in R2 generate a transient cysteinyl radical (C 439?) in R1 through a pathway thought to involve amino acid radical intermediates [Y122? → W48 → Y 356 within R2 to Y731 → Y730 → C 439 within R1]. To study this radical propagation process, we have synthesized R2 semisynthetically using intein technology and replaced Y 356 with a variety of fluorinated tyrosine analogues (2,3-F 2Y, 3,5-F2Y, 2,3,5-F3Y, 2,3,6-F3Y, and F4Y) that have been described and characterized in the accompanying paper. These fluorinated tyrosine derivatives have potentials that vary from -50 to +270 mV relative to tyrosine over the accessible pH range for RNR and pKas that range from 5.6 to 7.8. The pH rate profiles of deoxynucleotide production by these FnY356-R2s are reported. The results suggest that the rate-determining step can be changed from a physical step to the radical propagation step by altering the reduction potential of Y356? using these analogues. As the difference in potential of the FnY? relative to Y? becomes >80 mV, the activity of RNR becomes inhibited, and by 200 mV, RNR activity is no longer detectable. These studies support the model that Y356 is a redox-active amino acid on the radical-propagation pathway. On the basis of our previous studies with 3-NO2Y356-R2, we assume that 2,3,5-F3Y356,2,3,6-F3Y356, and F4Y356-R2s are all deprotonated at pH > 7.5. We show that they all efficiently initiate nucleotide reduction. If this assumption is correct, then a hydrogen-bonding pathway between W48 and Y 356 of R2 and Y731 of R1 does not play a central role in triggering radical initiation nor is hydrogen-atom transfer between these residues obligatory for radical propagation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 875669-69-5