898754-24-0Relevant articles and documents
Alkylation synthesis method of in-situ catalytic alcohol (by machine translation)
-
Paragraph 0105-0107; 0126-0128, (2020/11/01)
The method comprises VIB metal complexes, an auxiliary ligand and a base as a catalytic reaction system, wherein the alcohol serves as an alkylating agent, and the nucleophilic substrate is subjected to in-situ catalytic alkylation reaction in a solvent and an inert gas atmosphere. The catalytic system has a wide application range on a substrate, can catalyze the synthesis of C-N and C-C bond compounds of different structures under mild conditions, and can green synthesize a series of valuable N - alkylation and C - alkylation compounds. (by machine translation)
Sustainable and Selective Alkylation of Deactivated Secondary Alcohols to Ketones by Non-bifunctional Pincer N-heterocyclic Carbene Manganese
Lan, Xiao-Bing,Ye, Zongren,Liu, Jiahao,Huang, Ming,Shao, Youxiang,Cai, Xiang,Liu, Yan,Ke, Zhuofeng
, p. 2557 - 2563 (2020/05/04)
A sustainable and green route to access diverse functionalized ketones via dehydrogenative–dehydrative cross-coupling of primary and secondary alcohols is demonstrated. This borrowing hydrogen approach employing a pincer N-heterocyclic carbene Mn complex displays high activity and selectivity. A variety of primary and secondary alcohols are well tolerant and result in satisfactory isolated yields. Mechanistic studies suggest that this reaction proceeds via a direct outer-sphere mechanism and the dehydrogenation of the secondary alcohol substrates plays a vital role in the rate-limiting step.
Nonbifunctional Outer-Sphere Strategy Achieved Highly Active α-Alkylation of Ketones with Alcohols by N-Heterocyclic Carbene Manganese (NHC-Mn)
Lan, Xiao-Bing,Ye, Zongren,Huang, Ming,Liu, Jiahao,Liu, Yan,Ke, Zhuofeng
supporting information, p. 8065 - 8070 (2019/10/11)
The unusual nonbifunctional outer-sphere strategy was successfully utilized in developing an easily accessible N-heterocyclic carbene manganese (NHC-Mn) system for highly active α-alkylation of ketones with alcohols. This system was efficient for a wide range of ketones and alcohols under mild reaction conditions, and also for the green synthesis of quinoline derivatives. The direct outer-sphere mechanism and the high activity of the present system demonstrate the potential of nonbifunctional outer-sphere strategy in catalyst design for acceptorless dehydrogenative transformations.