906453-92-7Relevant articles and documents
Nitrile biotransformations for the synthesis of highly enantioenriched β-hydroxy and β-amino acid and amide derivatives: A general and simple but powerful and efficient benzyl protection strategy to increase enantioselectivity of the amidase
Ma, Da-You,Wang, De-Xian,Pan, Jie,Huang, Zhi-Tang,Wang, Mei-Xiang
, p. 4087 - 4091 (2008/09/20)
(Chemical Equation Presented) Biotransformations of a number of racemic β-hydroxy and β-amino nitrile derivatives were studied using Rhodococcus erythropolis AJ270, the nitrile hydratase and amidase-containing microbial whole cell catalyst, under very mild conditions. The overall enantioselectivity of nitrile biotransformations was governed predominantly by the amidase whose enantioselectivity was switched on remarkably by an O- and a N-benzyl protection group of the substrates. While biotransformations of β-hydroxy and β-amino alkanenitriles gave low yields of amide and acid products of very low enantiomeric purity, introduction of a simple benzyl protection group on the β-hydroxy and β-amino of nitrile substrates led to the formation of highly enantioenriched β-benzyloxy and β-benzylamino amides and acids in almost quantitative yield. The easy protection and deprotection operations, high chemical yield, and excellent enantioselectivity render the nitrile biotransformation a useful protocol in the synthesis of enantiopure β-hydroxy and β-amino acids.
Dramatic enhancement of enantioselectivity of biotransformations of β-hydroxy nitriles using a simple O-benzyl protection/docking group
Ma, Da-You,Zheng, Qi-Yu,Wang, De-Xian,Wang, Mei-Xiang
, p. 3231 - 3234 (2007/10/03)
Catalyzed by the Rhodococcus erythropolis AJ270 whole cell catalyst, the O-benzylated β-hydroxy alkanenitriles underwent remarkably high enantioselective biotransformations, whereas the biotransformations of free β-hydroxy alkanenitriles gave very low ena