Welcome to LookChem.com Sign In|Join Free

CAS

  • or

91114-62-4

Post Buying Request

91114-62-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

91114-62-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 91114-62-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,1,1,1 and 4 respectively; the second part has 2 digits, 6 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 91114-62:
(7*9)+(6*1)+(5*1)+(4*1)+(3*4)+(2*6)+(1*2)=104
104 % 10 = 4
So 91114-62-4 is a valid CAS Registry Number.

91114-62-4Upstream product

91114-62-4Downstream Products

91114-62-4Relevant articles and documents

Gas phase oxidation of benzene: Kinetics, thermochemistry and mechanism of initial steps

Raoult, Severine,Rayez, Marie-Therese,Rayez, Jean-Claude,Lesclaux, Robert

, p. 2245 - 2253 (2004)

Volatile aromatic compounds participate to a significant extent to the pollution of the troposphere and to ozone formation. A new investigation of the primary steps of the benzene oxidation, involving complementary experimental and theoretical approaches,

Oxidation of Benzene by the OH Radical. A Product and Pulse Radiolysis Study in Oxygenated Aqueous Solution

Pan, Xian-Ming,Schuchmann, Man Nien,Sonntag, Clemens von

, p. 289 - 297 (2007/10/02)

Hydroxyl radicals have been reacted with benzene.The major product is phenol.At low dose rate (γ-radiolysis) it is formed in 53percent yield with respect to the OH radical yield.This value increases to 93percent in alkaline solution (pH 12.3).With deuteriated benzene it is reduced to 39percent.In addition, more than fifteen different ring-opened and fragment products are formed.A good material balance (based on primary OH radical yield and oxygen consumption) was obtained. At high dose rate (pulse radiolysis) the major products are phenol, hydroquinone and cyclohexa-2,5-diene-1,4-diol.An important intermediate is the HO2./O2.- radical.Its rate of formation (kobsd = 800 s-1) has been followed by pulse radiolysis using tetranitromethane as a scavenger as well as conductimetrically (build-up of H+/O2.-). The results have been interpreted as follows: in their reaction with benzene, hydroxyl radicals yield the hydroxycyclohexadienyl radical 1.In the presence of oxygen, radical 1 undergoes reversible oxygen addition yielding four different hydroxycyclohexadienylperoxyl radicals: the cis- and trans-isomers of 6-hydroxycyclohexa-2,4-dienylperoxyl radical 3 and the cis- and trans-isomers of 4-hydroxycyclohexa-2,5-dienylperoxyl radical 4.As reported previously, in the equilibrium mixture of the radicals 1, 3 and 4 the concentrations of radical 3 represents only a few per cent of the total.It is suggested that 3 eliminates HO2. thereby yielding phenol.In basic solution deprotonation of 4 is followed by an O2.--elimination which opens up an additional route to phenol.The fact that phenol formation is not quantitative and its yield is reduced in the case of deuteriated benzene is due to another unimolecular decay route.The competing reaction is the intramolecular addition of the peroxyl radical function to a double bond (and subsequent fragmentation of the ring system).Since the HO2.-elimination is not very fast, bimolecular decay of the radicals 1, 3 and 4 (mainly of 4, 2k = 8.9 * 108 dm3 mol-1 s-1) plays an increasingly important role under the conditions of pulse radiolysis.As a consequence, the hydroquinone and cyclohexa-2,5-diene-1,4-diol yields increase with increasing dose rates under pulse radiolysis conditions (2 - 25 Gy pulse-1) as those of phenol and HO2. decrease.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 91114-62-4