920958-49-2Relevant articles and documents
Synthetic glycoconjugates characterize the fine specificity of: Brucella A and M monoclonal antibodies
Mandal, Satadru Sekhar,Ganesh, N. Vijaya,Sadowska, Joanna M.,Bundle, David R.
supporting information, p. 3874 - 3883 (2017/07/11)
The dominant cell wall antigen of Brucella bacteria is the O-polysaccharide component of the smooth lipopolysaccharide. Infection by various Brucella biovars causes abortions and infertility in a wide range of domestic and wild animals and debilitating disease in humans. Diagnosis relies on the detection of antibodies to the A and M antigens expressed in the O-polysaccharide. This molecule is a homopolymer of the rare monosaccharide, 4-formamido-4,6-dideoxy-d-mannopyranose (Rha4NFo). The A epitope is created by a uniform α1,2 linked internal polymeric sequence capped by a distinct tetrasaccharide sequence defining the M antigen. Unique oligosaccharides only available by chemical synthesis and conjugated via reducing and non-reducing residues to bovine serum albumin have revealed the structural basis of the fine specificity that allows the discrimination of these closely related A and M epitopes. All three M specific monoclonal antibodies (mAbs) are inferred to possess groove type binding sites open at each end, and recognize an α1,3 linked Rha4NFo disaccharide as a part of a trisaccharide epitope, which in two mAbs includes the terminal Rha4NFo residue. The binding site of one of these antibodies is sufficiently large to engage up to six Rha4NFo residues and involves weak recognition of α1,2 linked Rha4NFo residues. The third mAb binds an internal trisaccharide epitope of the M tetrasaccharide. Two A specific mAbs also possess groove type binding sites that accommodate six and four α1,2 linked Rha4NFo residues.
Preparation and use of microarrays containing synthetic heparin oligosaccharides for the rapid analysis of heparin-protein interactions
Noti, Christian,De Paz, Jose L.,Polito, Laura,Seeberger, Peter H.
, p. 8664 - 8686 (2007/10/03)
Heparin is a highly sulfated, linear polymer that participates in a plethora of biological processes by interaction with many proteins. The chemical complexity and heterogeneity of this polysaccharide can explain the fact that, despite its widespread medical use as an anticoagulant drug, the structure-function relationship of defined heparin sequences is still poorly understood. Here, we present the chemical synthesis of a library containing heparin oligosaccharides ranging from di- to hexamers of different sequences and sulfation patterns. An amine-terminated linker was placed at the reducing end of the synthetic structures to allow for immobilization onto N-hydroxysuccinimide activated glass slides and creation of heparin microarrays. Key features of this modular synthesis, such as the influence of the amine linker on the glycosidation efficiency, the use of 2-azidoglucose as glycosylating agents for oligosaccharide assembly, and the compatibility of the protecting group strategy with the sulfation-deprotection steps, are discussed. Heparin microarrays containing this oligosaccharide library were constructed using a robotic printer and employed to characterize the carbohydrate binding affinities of three heparin-binding growth factors. FGF-1, FGF-2 and FGF-4 that are implicated in angiogenesis, cell growth and differentiation were studied. These heparin chips aided in the discovery of novel, sulfated sequences that bind FGF, and in the determination of the structural requirements needed for recognition by using picomoles of protein on a single slide. The results presented here highlight the potential of combining oligosaccharide synthesis and carbohydrate microarray technology to establish a structure-activity relationship in biological processes.