925893-30-7Relevant articles and documents
Application of Threonine Aldolases for the Asymmetric Synthesis of α-Quaternary α-Amino Acids
Blesl, Julia,Trobe, Melanie,Anderl, Felix,Breinbauer, Rolf,Strohmeier, Gernot A.,Fesko, Kateryna
, p. 3453 - 3458 (2018)
We report the synthesis of diverse β-hydroxy-α,α-dialkyl-α-amino acids with perfect stereoselectivity for the α-quaternary center through the action of l- and d-specific threonine aldolases. A wide variety of aliphatic and aromatic aldehydes were accepted by the enzymes and conversions up to >80 % were obtained. In the case of d-selective threonine aldolase from Pseudomonas sp., generally higher diastereoselectivities were observed. The applicability of the protocol was demonstrated by performing enzymatic reactions on preparative scale. Using the d-threonine aldolase from Pseudomonas sp., (2R,3S)-2-amino-3-(2-fluorophenyl)-3-hydroxy-2-methylpropanoic acid was generated in preparative amounts in one step with a diastereomeric ratio >100 favoring the syn-product. A Birch-type reduction enabled the reductive removal of the β-hydroxy group from (2S)-2-amino-3-hydroxy-2-methyl-3-phenylpropanoic acid to generate enantiopure l-α-methyl-phenylalanine via a two-step chemo-enzymatic transformation.
A new d-threonine aldolase as a promising biocatalyst for highly stereoselective preparation of chiral aromatic β-hydroxy-α-amino acids
Chen, Qijia,Chen, Xi,Cui, Yunfeng,Ren, Jie,Lu, Wei,Feng, Jinhui,Wu, Qiaqing,Zhu, Dunming
, p. 5964 - 5973 (2017/12/26)
d-Threonine aldolase is an enzyme belonging to the glycine-dependent aldolases, and it catalyzes the reversible aldol reaction of glycine and acetaldehyde to give d-threonine and/or d-allo-threonine. In this study, a putative d-threonine aldolase gene from Delftia sp. RIT313 was cloned and expressed in Escherichia coli BL21 (DE3). The purified enzyme (DrDTA, 47 KDa) exhibited 21.3 U mg-1 activity for the aldol addition of glycine and acetaldehyde in MES-NaOH buffer (pH 6.0) at 50 °C. Both pyridoxal 5′-phosphate and metal ions were needed for the reaction, and the existence of the metal ions enhanced the stability of the enzyme. It was found that the conversion and Cβ-stereoselectivity were dramatically influenced by the reaction temperature, co-solvent, amount of enzyme and reaction time, and it is possible to enable the reaction under kinetic control to retain suitable conversion and high stereoselectivity at the β-carbon, thus tackling the "Cβ-stereoselectivity problem". DrDTA showed high activity toward aromatic aldehydes with electron-withdrawing substituents. Under the optimized reaction conditions, phenylserines with a 2′-fluoro- or 3′-nitro-substituent were obtained with >90% conversion and >90% de. In addition, dl-threo-phenylserine and dl-threo-4-(methylsulfonyl)phenylserine were efficiently resolved with an excellent enantiomeric excess value (ee, >99%) using a whole cell biocatalyst in a two-phase system at 1.0 M and 0.3 M, respectively, the highest substrate concentration reported so far. These results suggested that DrDTA might be a promising biocatalyst for producing chiral aromatic β-hydroxy-α-amino acids.
Synthesis of β-hydroxy-α-amino acids with a reengineered alanine racemase
Fesko, Kateryna,Giger, Lars,Hilvert, Donald
supporting information; experimental part, p. 5987 - 5990 (2009/06/25)
The Y265A mutant of alanine racemase (alrY265A) was evaluated as a catalyst for the synthesis of β-hydroxy-α-amino acids. It promotes the PLP-dependent aldol condensation of glycine with a range of aromatic aldehydes. The desired products were obtained wi