56-40-6Relevant articles and documents
Squamins C–F, four cyclopeptides from the seeds of Annona globiflora
Sosa-Rueda, Javier,Domínguez-Meléndez, Vanihamin,Ortiz-Celiseo, Araceli,López-Fentanes, Fernando C.,Cuadrado, Cristina,Fernández, José J.,Daranas, Antonio Hernández,Cen-Pacheco, Francisco
, (2021/08/04)
Four cyclic octapeptides, squamins C–F, were isolated from the seeds of Annona globiflora Schltdl. These compounds share part of their amino acid sequence, -Pro-Met(O)-Tyr-Gly-Thr-, with previously reported squamins A and B. Their structures were determined using NMR spectroscopic techniques together with quantum mechanical calculations (QM-NMR), ESI-HRMS data and a modified version of Marfey's chromatographic method. All compounds showed cytotoxic activity against DU-145 (human prostate cancer) and HeLa (human cervical carcinoma) cell lines. Clearly, A. globiflora is an important source of bioactive molecules, which could promote the sustainable exploitation of this undervalued specie.
Enhanced carboxypeptidase efficacies and differentiation of peptide epimers
Sung, Yu-Sheng,Putman, Joshua,Du, Siqi,Armstrong, Daniel W.
, (2022/01/29)
Carboxypeptidases enzymatically cleave the peptide bond of C-terminal amino acids. In humans, it is involved in enzymatic synthesis and maturation of proteins and peptides. Carboxypeptidases A and Y have difficulty hydrolyzing the peptide bond of dipeptides and some other amino acid sequences. Early investigations into different N-blocking groups concluded that larger moieties increased substrate susceptibility to peptide bond hydrolysis with carboxypeptidases. This study conclusively demonstrates that 6-aminoquinoline-N-hydroxysuccimidyl carbamate (AQC) as an N-blocking group greatly enhances substrate hydrolysis with carboxypeptidase. AQC addition to the N-terminus of amino acids and peptides also improves chromatographic peak shapes and sensitivities via mass spectrometry detection. These enzymes have been used for amino acid sequence determination prior to the advent of modern proteomics. However, most modern proteomic methods assume that all peptides are comprised of L-amino acids and therefore cannot distinguish L-from D-amino acids within the peptide sequence. The majority of existing methods that allow for chiral differentiation either require synthetic standards or incur racemization in the process. This study highlights the resistance of D-amino acids within peptides to enzymatic hydrolysis by Carboxypeptidase Y. This stereoselectivity may be advantageous when screening for low abundance peptide stereoisomers.
Recreating the natural evolutionary trend in key microdomains provides an effective strategy for engineering of a thermomicrobial N-demethylase
Gu, Zhenghua,Guo, Zitao,Shao, Jun,Shen, Chen,Shi, Yi,Tang, Mengwei,Xin, Yu,Zhang, Liang
, (2022/03/09)
N-demethylases have been reported to remove the methyl groups on primary or secondary amines, which could further affect the properties and functions of biomacromolecules or chemical compounds; however, the substrate scope and the robustness of N-demethylases have not been systematically investigated. Here we report the recreation of natural evolution in key microdomains of the Thermomicrobium roseum sarcosine oxidase (TrSOX), an N-demethylase with marked stability (melting temperature over 100 C) and enantioselectivity, for enhanced substrate scope and catalytic efficiency on -C-N-bonds. We obtained the structure of TrSOX by crystallization and X-ray diffraction (XRD) for the initial framework. The natural evolution in the nonconserved residues of key microdomains—including the catalytic loop, coenzyme pocket, substrate pocket, and entrance site—was then identified using ancestral sequence reconstruction (ASR), and the substitutions that accrued during natural evolution were recreated by site-directed mutagenesis. The single and double substitution variants catalyzed the N-demethylation of N-methyl-L-amino acids up to 1800- and 6000-fold faster than the wild type, respectively. Additionally, these single substitution variants catalyzed the terminal N-demethylation of non-amino-acid compounds and the oxidation of the main chain -C-N- bond to a -C=N- bond in the nitrogen-containing heterocycle. Notably, these variants retained the enantioselectivity and stability of the initial framework. We conclude that the variants of TrSOX are of great potential use in N-methyl enantiomer resolution, main-chain Schiff base synthesis, and alkaloid modification or degradation.
Electrochemical Synthesis of Glycine from Oxalic Acid and Nitrate
Balamurugan, Mani,Choi, Seungwoo,Im, Sang Won,Jang, Jun Ho,Jo, Young In,Kim, Jeong Eun,Lee, Kyu Min,Lee, Moo Young,Nam, Ki Tae
supporting information, p. 21943 - 21951 (2021/08/30)
In manufacturing C?N bond-containing compounds, it is an important challenge to alternate the conventional methodologies that utilize reactive substrates, toxic reagents, and organic solvents. In this study, we developed an electrochemical method to synthesize a C?N bond-containing molecule avoiding the use of cyanides and amines by harnessing nitrate (NO3?) as a nitrogen source in an aqueous electrolyte. In addition, we utilized oxalic acid as a carbon source, which can be obtained from electrochemical conversion of CO2. Thus, our approach can provide a route for the utilization of anthropogenic CO2 and nitrate wastes, which cause serious environmental problems including global warming and eutrophication. Interestingly, the coreduction of oxalic acid and nitrate generated reactive intermediates, which led to C?N bond formation followed by further reduction to an amino acid, namely, glycine. By carefully controlling this multireduction process with a fabricated Cu–Hg electrode, we demonstrated the efficient production of glycine with a faradaic efficiency (F.E.) of up to 43.1 % at ?1.4 V vs. Ag/AgCl (current density≈90 mA cm?2).
Enhancing the Catalytic Activity of MOF-808 Towards Peptide Bond Hydrolysis through Synthetic Modulations
Parac-Vogt, Tatjana N.,Simms, Charlotte,de Azambuja, Francisco
supporting information, p. 17230 - 17239 (2021/12/02)
The performance of MOFs in catalysis is largely derived from structural features, and much work has focused on introducing structural changes such as defects or ligand functionalisation to boost the reactivity of the MOF. However, the effects of different parameters chosen for the synthesis on the catalytic reactivity of the resulting MOF remains poorly understood. Here, we evaluate the role of metal precursor on the reactivity of Zr-based MOF-808 towards hydrolysis of the peptide bond in the glycylglycine model substrate. In addition, the effect of synthesis temperature and duration has been investigated. Surprisingly, the metal precursor was found to have a large influence on the reactivity of the MOF, surpassing the effect of particle size or number of defects. Additionally, we show that by careful selection of the Zr-salt precursor and temperature used in MOF syntheses, equally active MOF catalysts could be obtained after a 20 minute synthesis compared to 24 h synthesis.
Targeted Isolation of Asperheptatides from a Coral-Derived Fungus Using LC-MS/MS-Based Molecular Networking and Antitubercular Activities of Modified Cinnamate Derivatives
Chao, Rong,Hou, Xue-Mei,Xu, Wei-Feng,Hai, Yang,Wei, Mei-Yan,Wang, Chang-Yun,Gu, Yu-Cheng,Shao, Chang-Lun
, p. 11 - 19 (2021/01/14)
Under the guidance of MS/MS-based molecular networking, four new cycloheptapeptides, namely, asperheptatides A-D (1-4), were isolated together with three known analogues, asperversiamide A-C (5-7), from the coral-derived fungus Aspergillus versicolor. The planar structures of the two major compounds, asperheptatides A and B (1 and 2), were determined by comprehensive spectroscopic data analysis. The absolute configurations of the amino acid residues were determined by advanced Marfey's method. The two structurally related trace metabolites, asperheptatides C and D (3 and 4), were characterized by ESI-MS/MS fragmentation methods. A series of new derivatives (8-26) of asperversiamide A (5) were semisynthesized. The antitubercular activities of 1, 2, and 5-26 against Mycobacterium tuberculosis H37Ra were also evaluated. Compounds 9, 13, 23, and 24 showed moderate activities with MIC values of 12.5 μM, representing a potential new class of antitubercular agents.
Mechanochemical Prebiotic Peptide Bond Formation**
Cindro, Nikola,Grube?i?, Sa?a,Hernández, José G.,Me?trovi?, Ernest,Stolar, Tomislav,U?arevi?, Krunoslav
supporting information, p. 12727 - 12731 (2021/05/07)
The presence of amino acids on the prebiotic Earth, either stemming from endogenous chemical routes or delivered by meteorites, is consensually accepted. Prebiotically plausible pathways to peptides from inactivated amino acids are still unclear as most oligomerization approaches rely on thermodynamically disfavored reactions in solution. Now, a combination of prebiotically plausible minerals and mechanochemical activation enables the oligomerization of glycine at ambient temperature in the absence of water. Raising the reaction temperature increases the degree of oligomerization concomitantly with the formation of a commonly unwanted cyclic glycine dimer (DKP). However, DKP is a productive intermediate in the mechanochemical oligomerization of glycine. The findings of this research show that mechanochemical peptide bond formation is a dynamic process that provides alternative routes towards oligopeptides and establishes new synthetic approaches for prebiotic chemistry.
Method for photolysis of amido bonds
-
Paragraph 0046; 0048-0049; 0050-0053, (2021/06/26)
The invention discloses a method for photo-splitting amido bonds, wherein the method is mild in reaction condition and can realize splitting of amido bonds by using illumination. The method for photo-splitting the amido bonds comprises the following steps: reacting 2,4-dinitrofluorobenzene with an amino group of a substance which contains alpha amino acid at the tail end and is shown as a structural formula I to generate a compound 1 represented by a structural formula II; and under light irradiation, carrying out amido bond cleavage reaction on the compound 1, wherein R1 is a side chain group of alpha-amino acid, and R2 is aryl, aliphatic hydrocarbon, -CH(R)-COOH or polypeptide.
Powerful Steroid-Based Chiral Selector for High-Throughput Enantiomeric Separation of α-Amino Acids Utilizing Ion Mobility-Mass Spectrometry
Li, Yuling,Zhou, Bowen,Wang, Keke,Zhang, Jing,Sun, Wenjian,Zhang, Li,Guo, Yinlong
, p. 13589 - 13596 (2021/10/21)
Stereospecific recognition of amino acids (AAs) plays a crucial role in chiral biomarker-based diagnosis and prognosis. Separation of AA enantiomers is a long and tedious task due to the requirement of AA derivatization prior to the chromatographic or electrophoretic steps which are also time-consuming. Here, a mass-tagged chiral selector named [d0]/[d5]-estradiol-3-benzoate-17β-chloroformate ([d0]/[d5]-17β-EBC) with high reactivity and good enantiomeric resolution in regard to AAs was developed. After a quick and easy chemical derivatization step of AAs using 17β-EBC as the single chiral selector before ion mobility-mass spectrometry analysis, good enantiomer separation was achieved for 19 chiral proteinogenic AAs in a single analytical run (~2 s). A linear calibration curve of enantiomeric excess was also established using [d0]/[d5]-17β-EBC. It was demonstrated to be capable of determining enantiomeric ratios down to 0.5% in the nanomolar range. 17β-EBC was successfully applied to investigate the absolute configuration of AAs among peptide drugs and detect trace levels of-AAs in complex biological samples. These results indicated that [d0]/[d5]-17β-EBC may contribute to entail a valuable step forward in peptide drug quality control and discovering chiral disease biomarkers.
Mechanistic insight into metal ion-catalyzed transamination
Mayer, Robert J.,Kaur, Harpreet,Rauscher, Sophia A.,Moran, Joseph
supporting information, p. 19099 - 19111 (2021/11/22)
Several classes of biological reactions that are mediated by an enzyme and a co-factor can occur, to a slower extent, not only without the enzyme but even without the co-factor, under catalysis by metal ions. This observation has led to the proposal that metabolic pathways progressively evolved from using inorganic catalysts to using organocatalysts of increasing complexity. Transamination, the biological process by which ammonia is transferred between amino acids and α-keto acids, has a mechanism that has been well studied under enzyme/co-factor catalysis and under co-factor catalysis, but the metal ion-catalyzed variant was generally studied mostly at high temperatures (70-100 °C), and the details of its mechanism remained unclear. Here, we investigate which metal ions catalyze transamination under conditions relevant to biology (pH 7, 20-50 °C) and study the mechanism in detail. Cu2+, Ni2+, Co2+, and V5+ were identified as the most active metal ions under these constraints. Kinetic, stereochemical, and computational studies illuminate the mechanism of the reaction. Cu2+ and Co2+ are found to predominantly speed up the reaction by stabilizing a key imine intermediate. V5+ is found to accelerate the reaction by increasing the acidity of the bound imine. Ni2+ is found to do both to a limited extent. These results show that direct metal ion-catalyzed amino group transfer is highly favored even in the absence of co-factors or protein catalysts under biologically compatible reaction conditions.