Welcome to LookChem.com Sign In|Join Free

CAS

  • or
3-Fluorophenylboronic Acid Pinacol Ester is a boronic ester derivative featuring a phenyl ring with a fluorine atom attached, commonly utilized in organic synthesis and medicinal chemistry. It is known for its versatile reactivity and potential biological activity, making it a valuable component in the creation of various organic compounds and a significant player in the pharmaceutical and chemical industries.

936618-92-7

Post Buying Request

936618-92-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

936618-92-7 Usage

Uses

Used in Organic Synthesis:
3-Fluorophenylboronic Acid Pinacol Ester is used as a reagent for Suzuki-Miyaura cross-coupling reactions, which are crucial for the formation of carbon-carbon bonds. Its involvement in these reactions facilitates the synthesis of complex organic molecules.
Used in Pharmaceutical Development:
In the pharmaceutical industry, 3-Fluorophenylboronic Acid Pinacol Ester is employed as a key intermediate in the development of new drugs. Its unique structure and reactivity contribute to the design and synthesis of pharmaceuticals with potential therapeutic applications.
Used in Agrochemical Production:
3-Fluorophenylboronic Acid Pinacol Ester is also utilized in the agrochemical sector for the synthesis of agrochemicals. Its incorporation aids in the development of compounds with pesticidal or herbicidal properties, enhancing crop protection and yield.
Used in Chemical Industry:
3-Fluorophenylboronic Acid Pinacol Ester plays a significant role in the chemical industry, where it is used to produce a variety of organic compounds. Its versatility and reactivity make it an essential component in the synthesis of specialty chemicals and materials.

Check Digit Verification of cas no

The CAS Registry Mumber 936618-92-7 includes 9 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 6 digits, 9,3,6,6,1 and 8 respectively; the second part has 2 digits, 9 and 2 respectively.
Calculate Digit Verification of CAS Registry Number 936618-92:
(8*9)+(7*3)+(6*6)+(5*6)+(4*1)+(3*8)+(2*9)+(1*2)=207
207 % 10 = 7
So 936618-92-7 is a valid CAS Registry Number.

936618-92-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 15, 2017

Revision Date: Aug 15, 2017

1.Identification

1.1 GHS Product identifier

Product name 3-Fluorophenylboronic Acid Pinacol Ester

1.2 Other means of identification

Product number -
Other names 2-(3-fluorophenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:936618-92-7 SDS

936618-92-7Downstream Products

936618-92-7Relevant articles and documents

Synthesis of arylboronates via the Pd-catalyzed desulfitative coupling reaction of sodium arylsulfinates with bis(pinacolato)diboron

Qiu, Di,Li, Songyi,Yue, Guanglu,Mao, Jinshan,Xu, Bei,Yuan, Xinyu,Ye, Fei

, (2021/11/04)

The desulfitative borylation reaction of sodium arylsulfinates with bis(pinacolato)diboron or bis(neopentylglycolato)diboron under palladium catalysis has been developed, allowing selective C-B bond formation to give arylboronates with a range of functional groups in moderate to good yields under mild reaction conditions. A gram-scale preparation as well as the cascade Suzuki-Miyaura cross-coupling of arylboronates demonstrated the potential practical utility in organic synthesis.

Photo-induced thiolate catalytic activation of inert Caryl-hetero bonds for radical borylation

K?nig, Burkhard,Wang, Hua,Wang, Shun

supporting information, p. 1653 - 1665 (2021/06/17)

Substantial effort is currently being devoted to obtaining photoredox catalysts with high redox power. Yet, it remains challenging to apply the currently established methods to the activation of bonds with high bond dissociation energy and to substrates with high reduction potentials. Herein, we introduce a novel photocatalytic strategy for the activation of inert substituted arenes for aryl borylation by using thiolate as a catalyst. This catalytic system exhibits strong reducing ability and engages non-activated Caryl–F, Caryl–X, Caryl–O, Caryl–N, and Caryl–S bonds in productive radical borylation reactions, thus expanding the available aryl radical precursor scope. Despite its high reducing power, the method has a broad substrate scope and good functional-group tolerance. Spectroscopic investigations and control experiments suggest the formation of a charge-transfer complex as the key step to activate the substrates.

Unveiling Extreme Photoreduction Potentials of Donor-Acceptor Cyanoarenes to Access Aryl Radicals from Aryl Chlorides

Cao, Jilei,Tang, Xinxin,Toh, Ren Wei,Wang, Han,Wu, Jie,Wu, Xiangyang,Xu, Jinhui,Yang, Xiaona,Yeow, Edwin K. L.,Zhou, Rong

supporting information, p. 13266 - 13273 (2021/09/07)

Since the seminal work of Zhang in 2016, donor-acceptor cyanoarene-based fluorophores, such as 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4CzIPN), have been widely applied in photoredox catalysis and used as excellent metal-free alternatives to noble metal Ir- and Ru-based photocatalysts. However, all the reported photoredox reactions involving this chromophore family are based on harnessing the energy from a single visible light photon, with a limited range of redox potentials from -1.92 to +1.79 V vs SCE. Here, we document the unprecedented discovery that this family of fluorophores can undergo consecutive photoinduced electron transfer (ConPET) to achieve very high reduction potentials. One of the newly synthesized catalysts, 2,4,5-tri(9H-carbazol-9-yl)-6-(ethyl(phenyl)amino)isophthalonitrile (3CzEPAIPN), possesses a long-lived (12.95 ns) excited radical anion form, 3CzEPAIPN?-*, which can be used to activate reductively recalcitrant aryl chlorides (Ered ≈ -1.9 to -2.9 V vs SCE) under mild conditions. The resultant aryl radicals can be engaged in synthetically valuable aromatic C-B, C-P, and C-C bond formation to furnish arylboronates, arylphosphonium salts, arylphosphonates, and spirocyclic cyclohexadienes.

Ligand-Enabled, Iridium-Catalyzed ortho-Borylation of Fluoroarenes

Kuleshova, Olena,Asako, Sobi,Ilies, Laurean

, p. 5968 - 5973 (2021/05/31)

A terpyridine derivative and an iridium complex catalyze the C-H borylation of a stoichiometric amount of a fluoroarene with high ortho-selectivity and tolerance of functional groups such as bromide, chloride, ester, ketone, amine, and in situ-borylated hydroxyl. Complex drug molecules such as haloperidol can be selectively borylated ortho to the F atom. The terpyridine ligand undergoes rollover cyclometalation to produce an N,N,C-coordinated iridium complex, which may either selectively borylate the fluoroarene by itself or undergo reductive elimination to produce a borylated ligand.

Visible Light-Induced Borylation of C-O, C-N, and C-X Bonds

Arman, Hadi D.,Dang, Hang. T.,Haug, Graham C.,He, Ru,Jin, Shengfei,Larionov, Oleg V.,Nguyen, Viet D.,Nguyen, Vu T.,Schanze, Kirk S.

supporting information, (2020/02/04)

Boronic acids are centrally important functional motifs and synthetic precursors. Visible light-induced borylation may provide access to structurally diverse boronates, but a broadly efficient photocatalytic borylation method that can effect borylation of a wide range of substrates, including strong C-O bonds, remains elusive. Herein, we report a general, metal-free visible light-induced photocatalytic borylation platform that enables borylation of electron-rich derivatives of phenols and anilines, chloroarenes, as well as other haloarenes. The reaction exhibits excellent functional group tolerance, as demonstrated by the borylation of a range of structurally complex substrates. Remarkably, the reaction is catalyzed by phenothiazine, a simple organic photocatalyst with MW 200 that mediates the previously unachievable visible light-induced single electron reduction of phenol derivatives with reduction potentials as negative as approximately - 3 V versus SCE by a proton-coupled electron transfer mechanism. Mechanistic studies point to the crucial role of the photocatalyst-base interaction.

Copper-Catalyzed Oxidative Cross-Coupling of Electron-Deficient Polyfluorophenylboronate Esters with Terminal Alkynes

Liu, Zhiqiang,Budiman, Yudha P.,Tian, Ya-Ming,Friedrich, Alexandra,Huang, Mingming,Westcott, Stephen A.,Radius, Udo,Marder, Todd B.

supporting information, p. 17267 - 17274 (2020/12/01)

We report herein a mild procedure for the copper-catalyzed oxidative cross-coupling of electron-deficient polyfluorophenylboronate esters with terminal alkynes. This method displays good functional group tolerance and broad substrate scope, generating cro

Direct C?H Borylation of Arenes Catalyzed by Saturated Hydride-Boryl-Iridium-POP Complexes: Kinetic Analysis of the Elemental Steps

Esteruelas, Miguel A.,Martínez, Antonio,Oliván, Montserrat,O?ate, Enrique

supporting information, p. 12632 - 12644 (2020/09/09)

The saturated trihydride IrH3{κ3-P,O,P-[xant(PiPr2)2]} (1; xant(PiPr2)2=9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) activates the B?H bond of two molecules of pinacolborane (HBpin) to give H2, the hydride-boryl derivatives IrH2(Bpin){κ3-P,O,P-[xant(PiPr2)2]} (2) and IrH(Bpin)2{κ3-P,O,P-[xant(PiPr2)2]} (3) in a sequential manner. Complex 3 activates a C?H bond of two molecules of benzene to form PhBpin and regenerates 2 and 1, also in a sequential manner. Thus, complexes 1, 2, and 3 define two cycles for the catalytic direct C?H borylation of arenes with HBpin, which have dihydride 2 as a common intermediate. C?H bond activation of the arenes is the rate-determining step of both cycles, as the C?H oxidative addition to 3 is faster than to 2. The results from a kinetic study of the reactions of 1 and 2 with HBpin support a cooperative function of the hydride ligands in the B?H bond activation. The addition of the boron atom of the borane to a hydride facilitates the coordination of the B?H bond through the formation of κ1- and κ2-dihydrideborate intermediates.

Discovery of S64315, a Potent and Selective Mcl-1 Inhibitor

Szlavik, Zoltan,Csekei, Marton,Paczal, Attila,Szabo, Zoltan B.,Sipos, Szabolcs,Radics, Gabor,Proszenyak, Agnes,Balint, Balazs,Murray, James,Davidson, James,Chen, Ijen,Dokurno, Pawel,Surgenor, Allan E,Daniels, Zoe Marie,Hubbard, Roderick E.,Le Toumelin-Braizat, Ga?tane,Claperon, Audrey,Lysiak-Auvity, Ga?lle,Girard, Anne-Marie,Bruno, Alain,Chanrion, Maia,Colland, Frédéric,Maragno, Ana-Leticia,Demarles, Didier,Geneste, Olivier,Kotschy, Andras

, p. 13762 - 13795 (2020/12/02)

Myeloid cell leukemia 1 (Mcl-1) has emerged as an attractive target for cancer therapy. It is an antiapoptotic member of the Bcl-2 family of proteins, whose upregulation in human cancers is associated with high tumor grade, poor survival, and resistance to chemotherapy. Here we report the discovery of our clinical candidate S64315, a selective small molecule inhibitor of Mcl-1. Starting from a fragment derived lead compound, we have conducted structure guided optimization that has led to a significant (3 log) improvement of target affinity as well as cellular potency. The presence of hindered rotation along a biaryl axis has conferred high selectivity to the compounds against other members of the Bcl-2 family. During optimization, we have also established predictive PD markers of Mcl-1 inhibition and achieved both efficient in vitro cell killing and tumor regression in Mcl-1 dependent cancer models. The preclinical candidate has drug-like properties that have enabled its development and entry into clinical trials.

Redox-Neutral Borylation of Aryl Sulfonium Salts via C-S Activation Enabled by Light

Huang, Chen,Feng, Jie,Ma, Rui,Fang, Shuaishuai,Lu, Tao,Tang, Weifang,Du, Ding,Gao, Jian

, p. 9688 - 9692 (2019/12/02)

Reported here is a novel photoinduced strategy for the borylation of aryl sulfonium salts using bis(pinacolato)diboron as the boron source. This method exploits redox-neutral aryl sulfoniums to gain access to aryl radicals via C-S bond activation upon photoexcitation under transition-metal-free conditions. Therefore, it grants access to diverse arylboronate esters with good performance from easily available aryl sulfoniums accompanied by mild conditions, operational simplicity, and easy scalability.

Catalytic C?H Borylation Using Iron Complexes Bearing 4,5,6,7-Tetrahydroisoindol-2-ide-Based PNP-Type Pincer Ligand

Kato, Takeru,Kuriyama, Shogo,Nakajima, Kazunari,Nishibayashi, Yoshiaki

supporting information, p. 2097 - 2101 (2019/05/28)

Catalytic C?H borylation has been reported using newly designed iron complexes bearing a 4,5,6,7-tetrahydroisoindol-2-ide-based PNP pincer ligand. The reaction tolerated various five-membered heteroarenes, such as pyrrole derivatives, as well as six-membered aromatic compounds, such as toluene. Successful examples of the iron-catalyzed sp3 C?H borylation of anisole derivatives were also presented.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 936618-92-7