956034-03-0Relevant articles and documents
Discovery of novel and potent PARP/PI3K dual inhibitors for the treatment of cancer
Wu, Zhengyang,Bai, Ying,Jin, Jiaming,Jiang, Teng,Shen, Hui,Ju, Qiurong,Zhu, Qihua,Xu, Yungen
, (2021/03/19)
PARP inhibitors have achieved great success in cancers with BRCA mutations, but only a small portion of patients carry BRCA mutations, which results in their narrow indication spectrum. Recently, emerging evidence has demonstrated that combinations of PARP and PI3K inhibitors could evoke unanticipated synergistic effects in various cancers, even including BRCA-proficient ones. In this work, a series of PARP/PI3K dual inhibitors were designed, synthesized, and evaluated for their biological activities. It was found that compounds 9a and 23a exhibited excellent inhibitory activities against PARP-1 (9a: IC50 = 1.57 nM, 23a: IC50 = 0.91 nM) and PI3Kα (9a: IC50 = 2.0 nM, 23a: IC50 = 1.5 nM), and showed promising antiproliferative activities against both BRCA-deficient (HCT-116, HCC-1937) and BRCA-proficient (SW620, MDA-MB-231/468) tumor cells. 9a and 23a also exhibited considerable in vivo antitumor efficacy in an MDA-MB-468 xenograft mouse model, with TGI values of 56.39% and 48.77%, respectively. Additionally, 23a possessed promising profiles including high kinase selectivity and low cardiotoxicity. Overall, this work indicates 9a and 23a might be potential PARP/PI3K dual inhibitors for cancer therapy and deserve further research.
Five-And-Six-Membered Heterocyclic Compound, And Preparation Method, Pharmaceutical Composition And Use Thereof
-
Paragraph 0240; 0242, (2015/12/07)
A five-and-six-membered heterocyclic compound as represented by general formula I, pharmaceutically acceptable salt, metabolite, metabolic precursors or drug precursors thereof, preparation method, pharmaceutical composition, and use thereof; the five-and-six-membered heterocyclic compound has activity as a Janus kinase (JAK) inhibitor, and can be used to prepare drugs for treating diseases caused by the abnormal activity of kinase, such as cell proliferation diseases like cancer.
Scaffold Diversity Inspired by the Natural Product Evodiamine: Discovery of Highly Potent and Multitargeting Antitumor Agents
Wang, Shengzheng,Fang, Kun,Dong, Guoqiang,Chen, Shuqiang,Liu, Na,Miao, Zhenyuan,Yao, Jianzhong,Li, Jian,Zhang, Wannian,Sheng, Chunquan
, p. 6678 - 6696 (2015/09/07)
A critical question in natural product-based drug discovery is how to translate the product into drug-like molecules with optimal pharmacological properties. The generation of natural product-inspired scaffold diversity is an effective but challenging strategy to investigate the broader chemical space and identify promising drug leads. Extending our efforts to the natural product evodiamine, a diverse library containing 11 evodiamine-inspired novel scaffolds and their derivatives were designed and synthesized. Most of them showed good to excellent antitumor activity against various human cancer cell lines. In particular, 3-chloro-10-hydroxyl thio-evodiamine (66c) showed excellent in vitro and in vivo antitumor efficacy with good tolerability and low toxicity. Antitumor mechanism and target profiling studies indicate that compound 66c is the first-in-class triple topoisomerase I/topoisomerase II/tubulin inhibitor. Overall, this study provided an effective strategy for natural product-based drug discovery. (Figure Presented).
Rational design of phosphoinositide 3-kinase inhibitors that exhibit selectivity over the phosphoinositide 3-kinase isoform
Heffron, Timothy P.,Wei, Binqing,Olivero, Alan,Staben, Steven T.,Tsui, Vickie,Do, Steven,Dotson, Jennafer,Folkes, Adrian J.,Goldsmith, Paul,Goldsmith, Richard,Gunzner, Janet,Lesnick, John,Lewis, Cristina,Mathieu, Simon,Nonomiya, Jim,Shuttleworth, Stephen,Sutherlin, Daniel P.,Wan, Nan Chi,Wang, Shumei,Wiesmann, Christian,Zhu, Bing-Yan
experimental part, p. 7815 - 7833 (2012/01/05)
Of the four class I phosphoinositide 3-kinase (PI3K) isoforms, PI3K has justly received the most attention for its potential in cancer therapy. Herein we report our successful approaches to achieve PI3K vs PI3K selectivity for two chemical series. In the thienopyrimidine series of inhibitors, we propose that select ligands achieve selectivity derived from a hydrogen bonding interaction with Arg770 of PI3K that is not attained with the corresponding Lys777 of PI3K. In the benzoxepin series of inhibitors, the selectivity observed can be rationalized by the difference in electrostatic potential between the two isoforms in a given region rather than any specific interaction.
HETEROCYCLIC COMPOUNDS AS JANUS KINASE INHIBITORS
-
Page/Page column 56, (2011/07/09)
The invention provides compounds of formula (I): (Formula (I)), or a salt thereof as described herein. The invention also provides pharmaceutical compositions comprising a compound of formula (I), processes for preparing compounds of formula (I), intermediates useful for preparing compounds of formula (I) and therapeutic methods for suppressing an immune response or treating cancer or a hematologic malignancy using compounds of formula (I).
PHARMACEUTICAL COMPOUNDS
-
Page/Page column 25; 33, (2009/01/24)
Furanopyrimidines of formula (I): wherein W represents a furan ring; R1 and R2 form, together with the N atom to which they are attached, a group of the following formula (IIa): in which A is selected from: (a) a 4- to 7-membered saturated N-containing heterocyclic ring which includes 0 or 1 additional heteroatoms selected from N, S and O, the ring being fused to a second ring selected from a 4- to 7-membered saturated N-containing heterocyclic ring as defined above, a 5- to 12-membered unsaturated heterocyclic ring, a 5- to 7-membered saturated O-containing heterocyclic ring, a 3- to 12- membered saturated carbocyclic ring and an unsaturated 5- to 12- membered carbocyclic ring to form a heteropolycyclic ring system, the heteropolycyclic ring system being unsubstituted or substituted; (b) a 4- to 7-membered saturated N-containing heterocyclic ring which includes 0 or 1 additional heteroatoms selected from N, S and O and which further comprises, linking two constituent atoms of the ring, a bridgehead group selected from -(CR'2)n- and -(CR'2)r-O-(CR'2)s- wherein each R' is independently H or C1 - C6 alkyl, n is 1, 2 or 3, r is 0 or 1 and s is 0 or 1, the remaining ring positions being unsubstituted or substituted; and (c) a group of formula (IIb): wherein ring B is a 4- to 7-membered saturated N-containing heterocyclic ring which includes 0 or 1 additional heteroatoms selected from N, S and O and ring B' is a 3- to 12- membered saturated carbocyclic ring, a 5- to 7- membered saturated O-containing heterocyclic ring or a 4- to 7-membered saturated N-containing heterocyclic ring as defined above, each of B and B' being unsubstituted or substituted; m is 0, 1 or 2; R3 is H or C1-C6 alkyl; R4 is an indole group which is unsubstituted or substituted; and Ra is selected from R, halo, CN, C(O)NR2, halo(C1-C6)alkyl, SO2R, SO2NR2, NRSO2R, NRC(O)R, NRC(O)OR and NRC(O)NR2 wherein each R is independently H or C1-C6 alkyl; and the pharmaceutically acceptable salts thereof are inhibitors of PI3K and are selective for the p110δ isoform, which is a class Ia PI3 kinase, over both other class Ia and class Ib kinases. The compounds may be used to treat diseases and disorders arising from abnormal cell growth, function or behaviour associated with PI3 kinase such as cancer, immune disorders, cardiovascular disease, viral infection, inflammation, metabolism/endocrine function disorders and neurological disorders.
PHOSPHOINOSITIDE 3-KINASE INHIBITOR COMPOUNDS AND METHODS OF USE
-
Page/Page column 137, (2008/12/06)
Compounds of Formulas Ia-d where X is S or O, mor is a morpholine group, and R3 is a monocyclic heteroaryl group, and including stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, are useful for modulating the activity of lipid kinases including PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formula Ia-d for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed. [Insert Formula Ic and Id]
PHOSPHOINOSITIDE 3-KINASE INHIBITOR COMPOUNDS AND METHODS OF USE
-
Page/Page column 163, (2008/12/06)
Compounds of Formulas Ia-d where X is S or O, mor is a morpholine group, and R3 is a monocyclic heteroaryl group, and including stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, are useful for modulating the activity of lipid kinases including PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formula Ia-d for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed. Formula (Ic) and (Id).
Pharmaceutical compounds
-
Page/Page column 77, (2008/06/13)
Compounds of Formulae Ia and Ib, and stereoisomers, geometric isomers, tautomers, solvates, metabolites and pharmaceutically acceptable salts thereof, are useful for inhibiting lipid kinases including PI3K, and for treating disorders such as cancer mediated by lipid kinases. Methods of using compounds of Formula Ia and Ib for in vitro, in situ, and in vivo diagnosis, prevention or treatment of such disorders in mammalian cells, or associated pathological conditions, are disclosed.