Welcome to LookChem.com Sign In|Join Free

CAS

  • or

99553-79-4

Post Buying Request

99553-79-4 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

99553-79-4 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 99553-79-4 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 9,9,5,5 and 3 respectively; the second part has 2 digits, 7 and 9 respectively.
Calculate Digit Verification of CAS Registry Number 99553-79:
(7*9)+(6*9)+(5*5)+(4*5)+(3*3)+(2*7)+(1*9)=194
194 % 10 = 4
So 99553-79-4 is a valid CAS Registry Number.

99553-79-4Relevant articles and documents

Rational Design of 2-Substituted DMAP- N-oxides as Acyl Transfer Catalysts: Dynamic Kinetic Resolution of Azlactones

Deng, Yun,Guo, Hai-Ming,Huang, Bin,Li, Ning,Qu, Gui-Rong,Tian, Yin,Wu, Xiao-Xia,Xie, Ming-Sheng

supporting information, p. 19226 - 19238 (2020/11/13)

A novel concept that conversion of chiral 2-substituted DMAP into its DMAP-N-oxide could significantly enhance the catalytic activity and still be used as an acyl transfer catalyst is presented. A new type of chiral 2-substituted DMAP-N-oxides, derived from l-prolinamides, has been rationally designed, facilely synthesized, and applied in the dynamic kinetic resolution of azlactones. Using simple MeOH as the nucleophile, various l-amino acid derivatives were produced in high yields (up to 98% yield) and enantioselectivities (up to 96% ee). Furthermore, α-deuterium labeled l-phenylalanine derivative was also obtained. Experiments and DFT calculations revealed that in 2-substituted DMAP-N-oxide, the oxygen atom acted as the nucleophilic site and the N-H bond functioned as the H-bond donor. High enantioselectivity of the reaction was governed by steric factors, and the addition of benzoic acid reduced the activation energy by participating in the construction of a H-bond bridge. The theoretical chemical study indicated that only when attack directions of the chiral catalyst were fully considered could the correct calculation results be obtained. This work paves the way for the utilization of the C2 position of the pyridine ring and the development of chiral 2-substituted DMAP-N-oxides as efficient acyl transfer catalysts.

Regiodivergent Enantioselective γ-Additions of Oxazolones to 2,3-Butadienoates Catalyzed by Phosphines: Synthesis of α,α-Disubstituted α-Amino Acids and N,O-Acetal Derivatives

Wang, Tianli,Yu, Zhaoyuan,Hoon, Ding Long,Phee, Claire Yan,Lan, Yu,Lu, Yixin

, p. 265 - 271 (2016/01/25)

Phosphine-catalyzed regiodivergent enantioselective C-2- and C-4-selective γ-additions of oxazolones to 2,3-butadienoates have been developed. The C-4-selective γ-addition of oxazolones occurred in a highly enantioselective manner when 2-aryl-4-alkyloxazol-5-(4H)-ones were employed as pronucleophiles. With the employment of 2-alkyl-4-aryloxazol-5-(4H)-ones as the donor, C-2-selective γ-addition of oxazolones took place in a highly enantioselective manner. The C-4-selective adducts provided rapid access to optically enriched α,α-disubstituted α-amino acid derivatives, and the C-2-selective products led to facile synthesis of chiral N,O-acetals and γ-lactols. Theoretical studies via DFT calculations suggested that the origin of the observed regioselectivity was due to the distortion energy that resulted from the interaction between the nucleophilic oxazolide and the electrophilic phosphonium intermediate.

Bispalladacycle-catalyzed Michael addition of in situ formed azlactones to enones

Weber, Manuel,Jautze, Sascha,Frey, Wolfgang,Peters, René

, p. 14792 - 14804 (2013/01/15)

The development and further evolution of the first catalytic asymmetric conjugate additions of azlactones as activated amino acid derivatives to enones is described. Whereas the first-generation approach started from isolated azlactones, in the second-generation approach the azlactones could be generated in situ starting from racemic N-benzoylated amino acids. The third evolution stage could make use of racemic unprotected α-amino acids to directly form highly enantioenriched and diastereomerically pure masked quaternary amino acid products bearing an additional tertiary stereocenter. The step-economic transformations were accomplished by cooperative activation by using a robust planar chiral bis-Pd catalyst, a Br?nsted acid (HOAc or BzOH; Ac=acetyl, Bz=benzoyl), and a Br?nsted base (NaOAc). In particular the second- and third-generation approaches provide a rapid and divergent access to biologically interesting unnatural quaternary amino acid derivatives from inexpensive bulk chemicals. In that way highly enantioenriched acyclic α-amino acids, α-alkyl proline, and α-alkyl pyroglutamic acid derivatives could be prepared in diastereomerically pure form. In addition, a unique way is presented to prepare diastereomerically pure bicyclic dipeptides in just two steps from unprotected tertiary α-amino acids. Flourishing step economy: The evolution of the catalytic asymmetric addition of azlactones to enones is described. The first-generation approach started from isolated azlactones. In the second-generation approach azlactones could be generated in situ from racemic N-benzoylated amino acids. The third evolution stage could directly use racemic unprotected α-amino acids to form a large number of highly enantioenriched quaternary amino acids derivatives (see figure). Copyright

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 99553-79-4