Welcome to LookChem.com Sign In|Join Free
  • or

Fumaric acid SDS

Post Buying Request

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 10, 2017

Revision Date: Aug 10, 2017

1.Identification

1.1 GHS Product identifier

Product name fumaric acid

1.2 Other means of identification

Product number -
Other names U-1149

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only. Processing Aids and Additives
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

2.Hazard identification

2.1 Classification of the substance or mixture

Eye irritation, Category 2

2.2 GHS label elements, including precautionary statements

Pictogram(s)
Signal word

Warning

Hazard statement(s)

H319 Causes serious eye irritation

Precautionary statement(s)
Prevention

P264 Wash ... thoroughly after handling.

P280 Wear protective gloves/protective clothing/eye protection/face protection.

Response

P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.

P337+P313 If eye irritation persists: Get medical advice/attention.

Storage

none

Disposal

none

2.3 Other hazards which do not result in classification

none

3.Composition/information on ingredients

3.1 Substances

Chemical name Common names and synonyms CAS number EC number Concentration
fumaric acid fumaric acid 110-17-8 none 100%

4.First-aid measures

4.1 Description of necessary first-aid measures

General advice

Consult a physician. Show this safety data sheet to the doctor in attendance.

If inhaled

Fresh air, rest.

In case of skin contact

Rinse skin with plenty of water or shower.

In case of eye contact

First rinse with plenty of water for several minutes (remove contact lenses if easily possible), then refer for medical attention.

If swallowed

Rinse mouth.

4.2 Most important symptoms/effects, acute and delayed

Inhalation of dust may cause respiratory irritation. Compound is non-toxic when ingested. Prolonged contact with eyes or skin may cause irritation. (USCG, 1999)

4.3 Indication of immediate medical attention and special treatment needed, if necessary

Immediate first aid: Ensure that adequate decontamination has been carried out. If patient is not breathing, start artificial respiration, preferably with a demand-valve resuscitator, bag-valve-mask device, or pocket mask, as trained. Perform CPR as necessary. Immediately flush contaminated eyes with gently flowing water. Do not induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain an open airway and prevent aspiration. Keep patient quiet and maintain normal body temperature. Obtain medical attention. /Organic acids and related compounds/

5.Fire-fighting measures

5.1 Extinguishing media

Suitable extinguishing media

If material on fire or involved in fire: use water in flooding quantities as fog. Solid streams of water may spread fire. Cool all affected containers with flooding quantities of water. Apply water from as far a distance as possible. Use foam, dry chemicals, or carbon dioxide.

5.2 Specific hazards arising from the chemical

Special Hazards of Combustion Products: Irritating fumes of maleic anhydride may form in fires. Behavior in Fire: Dust presents explosion hazard; knock down dust with water fog. (USCG, 1999)

5.3 Special protective actions for fire-fighters

Wear self-contained breathing apparatus for firefighting if necessary.

6.Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

Use personal protective equipment. Avoid dust formation. Avoid breathing vapours, mist or gas. Ensure adequate ventilation. Evacuate personnel to safe areas. Avoid breathing dust. For personal protection see section 8.

6.2 Environmental precautions

Personal protection: particulate filter respirator adapted to the airborne concentration of the substance. Do NOT let this chemical enter the environment. Sweep spilled substance into covered containers. If appropriate, moisten first to prevent dusting. Then store and dispose of according to local regulations.

6.3 Methods and materials for containment and cleaning up

Environmental considerations - land spill: Dig a pit, lagoon, holding area to contain liquid or solid material. /SRP: If time permits, pits, ponds, lagoons, soak holes, or holding areas should be sealed with an impermeable flexible membrane liner./ Cover solids with a plastic sheet to prevent dissolving in rain or fiefighting water. Neutralize with agricultural lime (CaO), crushed limestone (CaCO3), or sodium bicarbonate (NaHCO3).

7.Handling and storage

7.1 Precautions for safe handling

Avoid contact with skin and eyes. Avoid formation of dust and aerosols. Avoid exposure - obtain special instructions before use.Provide appropriate exhaust ventilation at places where dust is formed. For precautions see section 2.2.

7.2 Conditions for safe storage, including any incompatibilities

Separated from oxidizing materials.The bulk material should be stored in a well-closed container in a cool, dry place.

8.Exposure controls/personal protection

8.1 Control parameters

Occupational Exposure limit values

no data available

Biological limit values

no data available

8.2 Appropriate engineering controls

Handle in accordance with good industrial hygiene and safety practice. Wash hands before breaks and at the end of workday.

8.3 Individual protection measures, such as personal protective equipment (PPE)

Eye/face protection

Safety glasses with side-shields conforming to EN166. Use equipment for eye protection tested and approved under appropriate government standards such as NIOSH (US) or EN 166(EU).

Skin protection

Wear impervious clothing. The type of protective equipment must be selected according to the concentration and amount of the dangerous substance at the specific workplace. Handle with gloves. Gloves must be inspected prior to use. Use proper glove removal technique(without touching glove's outer surface) to avoid skin contact with this product. Dispose of contaminated gloves after use in accordance with applicable laws and good laboratory practices. Wash and dry hands. The selected protective gloves have to satisfy the specifications of EU Directive 89/686/EEC and the standard EN 374 derived from it.

Respiratory protection

Wear dust mask when handling large quantities.

Thermal hazards

no data available

9.Physical and chemical properties

Physical state white powder or colourless crystals
Colour Needles, monoclinic prisms or leaflets from water
Odour Odorless
Melting point/ freezing point 187°C(lit.)
Boiling point or initial boiling point and boiling range 160°C/1mmHg(lit.)
Flammability Combustible. Gives off irritating or toxic fumes (or gases) in a fire.
Lower and upper explosion limit / flammability limit no data available
Flash point 230°C
Auto-ignition temperature 740°C
Decomposition temperature no data available
pH 3,0-3,2 (0,05?% solution at 25?°C)
Kinematic viscosity no data available
Solubility In water:0.63 g/100 mL (25 oC)
Partition coefficient n-octanol/water (log value) no data available
Vapour pressure 1.7 mm Hg ( 165 °C)
Density and/or relative density 1.625
Relative vapour density no data available
Particle characteristics no data available

10.Stability and reactivity

10.1 Reactivity

no data available

10.2 Chemical stability

Fumaric acid is stable although it is subject to degradation by both aerobic and anaerobic microorganisms. When heated in sealed vessels with water at 150 - 170°C it forms DL-malic acid.

10.3 Possibility of hazardous reactions

SLIGHTDust explosion possible if in powder or granular form, mixed with air.FUMARIC ACID is a carboxylic acid. Carboxylic acids donate hydrogen ions if a base is present to accept them. They react in this way with all bases, both organic (for example, the amines) and inorganic. Their reactions with bases, called "neutralizations", are accompanied by the evolution of substantial amounts of heat. Neutralization between an acid and a base produces water plus a salt. Carboxylic acids with six or fewer carbon atoms are freely or moderately soluble in water; those with more than six carbons are slightly soluble in water. Soluble carboxylic acid dissociate to an extent in water to yield hydrogen ions. The pH of solutions of carboxylic acids is therefore less than 7.0. Many insoluble carboxylic acids react rapidly with aqueous solutions containing a chemical base and dissolve as the neutralization generates a soluble salt. Carboxylic acids in aqueous solution and liquid or molten carboxylic acids can react with active metals to form gaseous hydrogen and a metal salt. Such reactions occur in principle for solid carboxylic acids as well, but are slow if the solid acid remains dry. Even "insoluble" carboxylic acids may absorb enough water from the air and dissolve sufficiently in it to corrode or dissolve iron, steel, and aluminum parts and containers. Carboxylic acids, like other acids, react with cyanide salts to generate gaseous hydrogen cyanide. The reaction is slower for dry, solid carboxylic acids. Insoluble carboxylic acids react with solutions of cyanides to cause the release of gaseous hydrogen cyanide. Flammable and/or toxic gases and heat are generated by the reaction of carboxylic acids with diazo compounds, dithiocarbamates, isocyanates, mercaptans, nitrides, and sulfides. Carboxylic acids, especially in aqueous solution, also react with sulfites, nitrites, thiosulfates (to give H2S and SO3), dithionites (SO2), to generate flammable and/or toxic gases and heat. Their reaction with carbonates and bicarbonates generates a harmless gas (carbon dioxide) but still heat. Like other organic compounds, carboxylic acids can be oxidized by strong oxidizing agents and reduced by strong reducing agents. These reactions generate heat. A wide variety of products is possible. Like other acids, carboxylic acids may initiate polymerization reactions; like other acids, they often catalyze (increase the rate of) chemical reactions. Partial carbonization and formation of maleic anhydride occur at 230°C (open vessel).

10.4 Conditions to avoid

no data available

10.5 Incompatible materials

Fumaric acid undergoes reactions typical of an organic acid.

10.6 Hazardous decomposition products

Irritating fumes of maleic anhydride may form in fires.

11.Toxicological information

Acute toxicity

  • Oral: LD50 Rat (female) oral 9300 mg/kg
  • Inhalation: no data available
  • Dermal: no data available

Skin corrosion/irritation

no data available

Serious eye damage/irritation

no data available

Respiratory or skin sensitization

no data available

Germ cell mutagenicity

no data available

Carcinogenicity

no data available

Reproductive toxicity

no data available

STOT-single exposure

no data available

STOT-repeated exposure

no data available

Aspiration hazard

no data available

12.Ecological information

12.1 Toxicity

  • Toxicity to fish: LC50; Species: Brachydanio rerio (Zebrafish); Conditions: static; Concentration: 245 mg/L for 48 hr
  • Toxicity to daphnia and other aquatic invertebrates: EC50; Species: Daphnia magna (Water flea, age <24 hr larvae, 1st instar); Conditions: freshwater, static, 22°C, pH 7.7 (7.0-8.2), hardness 154.5 mg/L CaCO3 (89.5-180 mg/L CaCO3), alkalinity 137.7 mg/L CaCO3 (95-156 mg/L CaCO3); Concentration: 212000 ug/L for 48 hr (95% confidence interval: 204000-220000 ug/L); Effect: intoxication, immobilization
  • Toxicity to algae: EC50; Species: Scenedesmus subspicatus (green algae); Conditions: UBA algal growth inhibition test; Concentration: 41 mg/L for 72 hr; Effect: Growth rate
  • Toxicity to microorganisms: no data available

12.2 Persistence and degradability

AEROBIC: In river die-away studies using various natural waters, the degradation half-life of fumaric acid ranged from 1-15 days with faster degradation occurring in more polluted waters(1); degradation half-life in distilled water controls was 55 days(1). Using a microbe inoculum taken from three polluted surface waters, a 5 day Theoretical BOD of 34% was measured(2). Using a Warburg respirometer and a sewage inoculum, 5 day Theoretical BODs of 57-70% were measured at concentrations of 3.75-7.5 ppm(3). Fumaric acid, present at 500 ppm, had a Theoretical BOD of 1.7% after a 24-hr incubation period in a Warburg respirometer using an activated sludge inoculum(4). Using an activated sludge adapted to phenol, a theoretical BOD of 41% was measured after a 12 hr incubation period in a Warburg respirometer(5).

12.3 Bioaccumulative potential

An estimated BCF of 3 was calculated in fish for fumaric acid(SRC), using a log Kow of 0.46(1) and a regression-derived equation(2). According to a classification scheme(3), this BCF suggests the potential for bioconcentration in aquatic organisms is low(SRC).

12.4 Mobility in soil

Using a structure estimation method based on molecular connectivity indices(1), the Koc of fumaric acid can be estimated to be 7(SRC). According to a classification scheme(2), this estimated Koc value suggests that fumaric acid is expected to have very high mobility in soil. The pKa values of fumaric acid are 3.03 and 4.54(3), indicating that this compound will exist almost entirely in anion form in the environment and anions generally do not adsorb more strongly to soils containing organic carbon and clay than their neutral counterparts(4).

12.5 Other adverse effects

no data available

13.Disposal considerations

13.1 Disposal methods

Product

The material can be disposed of by removal to a licensed chemical destruction plant or by controlled incineration with flue gas scrubbing. Do not contaminate water, foodstuffs, feed or seed by storage or disposal. Do not discharge to sewer systems.

Contaminated packaging

Containers can be triply rinsed (or equivalent) and offered for recycling or reconditioning. Alternatively, the packaging can be punctured to make it unusable for other purposes and then be disposed of in a sanitary landfill. Controlled incineration with flue gas scrubbing is possible for combustible packaging materials.

14.Transport information

14.1 UN Number

ADR/RID: UN3077 IMDG: UN3077 IATA: UN3077

14.2 UN Proper Shipping Name

ADR/RID: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.
IMDG: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.
IATA: ENVIRONMENTALLY HAZARDOUS SUBSTANCE, SOLID, N.O.S.

14.3 Transport hazard class(es)

ADR/RID: 9 IMDG: 9 IATA: 9

14.4 Packing group, if applicable

ADR/RID: III IMDG: III IATA: III

14.5 Environmental hazards

ADR/RID: no IMDG: no IATA: no

14.6 Special precautions for user

no data available

14.7 Transport in bulk according to Annex II of MARPOL 73/78 and the IBC Code

no data available

15.Regulatory information

15.1 Safety, health and environmental regulations specific for the product in question

Chemical name Common names and synonyms CAS number EC number
fumaric acid fumaric acid 110-17-8 none
European Inventory of Existing Commercial Chemical Substances (EINECS) Listed.
EC Inventory Listed.
United States Toxic Substances Control Act (TSCA) Inventory Listed.
China Catalog of Hazardous chemicals 2015 Not Listed.
New Zealand Inventory of Chemicals (NZIoC) Listed.
Philippines Inventory of Chemicals and Chemical Substances (PICCS) Listed.
Vietnam National Chemical Inventory Listed.
Chinese Chemical Inventory of Existing Chemical Substances (China IECSC) Listed.

16.Other information

Information on revision

Creation Date Aug 10, 2017
Revision Date Aug 10, 2017

Abbreviations and acronyms

  • CAS: Chemical Abstracts Service
  • ADR: European Agreement concerning the International Carriage of Dangerous Goods by Road
  • RID: Regulation concerning the International Carriage of Dangerous Goods by Rail
  • IMDG: International Maritime Dangerous Goods
  • IATA: International Air Transportation Association
  • TWA: Time Weighted Average
  • STEL: Short term exposure limit
  • LC50: Lethal Concentration 50%
  • LD50: Lethal Dose 50%
  • EC50: Effective Concentration 50%

References

  • IPCS - The International Chemical Safety Cards (ICSC), website: http://www.ilo.org/dyn/icsc/showcard.home
  • HSDB - Hazardous Substances Data Bank, website: https://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
  • IARC - International Agency for Research on Cancer, website: http://www.iarc.fr/
  • eChemPortal - The Global Portal to Information on Chemical Substances by OECD, website: http://www.echemportal.org/echemportal/index?pageID=0&request_locale=en
  • CAMEO Chemicals, website: http://cameochemicals.noaa.gov/search/simple
  • ChemIDplus, website: http://chem.sis.nlm.nih.gov/chemidplus/chemidlite.jsp
  • ERG - Emergency Response Guidebook by U.S. Department of Transportation, website: http://www.phmsa.dot.gov/hazmat/library/erg
  • Germany GESTIS-database on hazard substance, website: http://www.dguv.de/ifa/gestis/gestis-stoffdatenbank/index-2.jsp
  • ECHA - European Chemicals Agency, website: https://echa.europa.eu/

Disclaimer: The above information is believed to be correct but does not purport to be all inclusive and shall be used only as a guide. The information in this document is based on the present state of our knowledge and is applicable to the product with regard to appropriate safety precautions. It does not represent any guarantee of the properties of the product. We as supplier shall not be held liable for any damage resulting from handling or from contact with the above product.
Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 110-17-8