Welcome to LookChem.com Sign In|Join Free

CAS

  • or

2564-03-6

Post Buying Request

2564-03-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

2564-03-6 Usage

Check Digit Verification of cas no

The CAS Registry Mumber 2564-03-6 includes 7 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 4 digits, 2,5,6 and 4 respectively; the second part has 2 digits, 0 and 3 respectively.
Calculate Digit Verification of CAS Registry Number 2564-03:
(6*2)+(5*5)+(4*6)+(3*4)+(2*0)+(1*3)=76
76 % 10 = 6
So 2564-03-6 is a valid CAS Registry Number.

2564-03-6SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 14, 2017

Revision Date: Aug 14, 2017

1.Identification

1.1 GHS Product identifier

Product name N-(3-Bromophenyl)-2-chloroacetamide

1.2 Other means of identification

Product number -
Other names 3'-BROMO-2-CHLOROACETANILIDE

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:2564-03-6 SDS

2564-03-6Relevant articles and documents

Synthesis and Biological Evaluation of Dithiobisacetamides as Novel Urease Inhibitors

Liu, Mei-Ling,Li, Wei-Yi,Fang, Hai-Lian,Ye, Ya-Xi,Li, Su-Ya,Song, Wan-Qing,Xiao, Zhu-Ping,Ouyang, Hui,Zhu, Hai-Liang

, (2021/11/13)

Thirty-eight disulfides containing N-arylacetamide were designed and synthesized in an effort to develop novel urease inhibitors. Biological evaluation revealed that some of the synthetic compounds exhibited strong inhibitory potency against both cell-free urease and urease in intact cell with low cytotoxicity to mammalian cells even at concentration up to 250 μM. Of note, 2,2′-dithiobis(N-(2-fluorophenyl)acetamide) (d7), 2,2′-dithiobis(N-(3,5-difluorophenyl)acetamide) (d24), and 2,2′-dithiobis(N-(3-fluorophenyl)acetamide) (d8) were here identified as the most active inhibitors with IC50 of 0.074, 0.44, and 0.81 μM, showing 32- to 355-fold higher potency than the positive control acetohydroxamic acid. These disulfides were confirmed to bind urease without covalent modification of the cysteine residue and to inhibit urease reversibly with a mixed inhibition mechanism. They also showed very good anti-Helicobacter pylori activities with d8 showing a comparable potency to the clinical used drug amoxicillin. The impressive in vitro biological profile indicated their immense potential as therapeutic agents to tackle H. pylori caused infections.

Anti-melanogenesis and anti-tyrosinase properties of aryl-substituted acetamides of phenoxy methyl triazole conjugated with thiosemicarbazide: Design, synthesis and biological evaluations

Hosseinpoor, Hona,Moghadam Farid, Sara,Iraji, Aida,Askari, Sadegh,Edraki, Najmeh,Hosseini, Samanesadat,Jamshidzadeh, Akram,Larijani, Bagher,Attarroshan, Mahshid,Pirhadi, Somayeh,Mahdavi, Mohammad,Khoshneviszadeh, Mehdi

, (2021/06/21)

A series of aryl phenoxy methyl triazole conjugated with thiosemicarbazides were designed, synthesized, and evaluated for their tyrosinase inhibitory activities in the presence of L-dopa and L-tyrosine as substrates. All the compounds showed tyrosinase inhibition in the sub-micromolar concentration. Among the derivatives, compound 9j bearing benzyl displayed exceptionally high potency against tyrosinase with IC50 value of 0.11 μM and 0.17 μM in the presence of L-tyrosine and L-dopa as substrates which is significantly lower than that of kojic acid as the positive control with an IC50 value of 9.28 μM for L-tyrosine and 9.30 μM for L-dopa. According to Lineweaver–Burk plot, 9j demonstrated an uncompetitive type of inhibition in the kinetic assay. Also, in vitro antioxidant activities determined by DPPH assay recorded an IC50 value of 68.43 μM for 9i. The melanin content of 9j was determined on B16F10 melanoma human cells which demonstrated a significant reduction of the melanin content. Moreover, the binding energies corresponding to the same ligand as well as computer-aided drug-likeness and pharmacokinetic studies were also carried out. Compound 9j also possessed metal chelation potential correlated to its high anti-TYR activity.

α-Glucosidase and α-amylase inhibition, molecular modeling and pharmacokinetic studies of new quinazolinone-1,2,3-triazole-acetamide derivatives

Yavari, Ali,Mohammadi-Khanaposhtani, Maryam,Moradi, Shahram,Bahadorikhalili, Saeed,Pourbagher, Roghayeh,Jafari, Nasrin,Faramarzi, Mohammad Ali,Zabihi, Ebrahim,Mahdavi, Mohammad,Biglar, Mahmood,Larijani, Bagher,Hamedifar, Haleh,Hajimiri, Mir Hamed

, p. 702 - 711 (2021/01/18)

In this study, a new series of quinazolinone-1,2,3-triazole-acetamide hybrids 8a–m, using by molecular hybridization of the potent α-glucosidase inhibitor pharmacophores, was designed and evaluated against carbohydrate-hydrolyzing enzymes α-glucosidase and α-amylase. All the synthesized compounds with IC50 values in the range of 45.3 ± 1.4 μM to 195.5 ± 4.7 μM were significantly more potent than standard inhibitor against α-glucosidase, while these compounds were not active against α-amylase in comparison to standard inhibitor. Representatively, compound 8a with IC50 = 45.3 ± 1.4 μM was around 17 times more potent than standard inhibitor acarbose (IC50 = 750.0 ± 12.5 μM). The inhibition kinetic analysis of the compound 8a indicated that this compound was a competitive α-glucosidase inhibitor. Molecular modeling analysis confirmed that the most potent inhibitors 8a and 8b well accommodated in the modeled α-glucosidase active site and it was also revealed that these compounds formed stable inhibitor–receptor complexes with the α-glucosidase in comparison to acarbose. In silico pharmacokinetic and toxicity of the most potent compounds were evaluated and obtained results were compared with acarbose. Furthermore, the most potent compounds were also evaluated against human normal cells and no cytotoxicity was observed.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 2564-03-6