Welcome to LookChem.com Sign In|Join Free

CAS

  • or

51407-46-6

Post Buying Request

51407-46-6 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier

51407-46-6 Usage

Uses

2-(4-Isobutylphenyl)propanal is an impurity of the drug Ibuprofen (I140000), a selective cyclooxygenase inhibitor that also inhibits PGH synthase-1 and PGH synthase-2 with comparable potency.

Check Digit Verification of cas no

The CAS Registry Mumber 51407-46-6 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 5,1,4,0 and 7 respectively; the second part has 2 digits, 4 and 6 respectively.
Calculate Digit Verification of CAS Registry Number 51407-46:
(7*5)+(6*1)+(5*4)+(4*0)+(3*7)+(2*4)+(1*6)=96
96 % 10 = 6
So 51407-46-6 is a valid CAS Registry Number.
InChI:InChI=1/C13H18O/c1-10(2)8-12-4-6-13(7-5-12)11(3)9-14/h4-7,9-11H,8H2,1-3H3

51407-46-6Relevant articles and documents

Synthesis of rac-ɑ-aryl propionaldehydes via branched-selective hydroformylation of terminal arylalkenes using water-soluble Rh-PNP catalyst

Chen, Fen-Er,Gao, Peng,Ke, Miaolin,Liang, Guanfeng,Ru, Tong

, (2021/08/26)

This work detailed the preparation of a class of water-soluble PNP ligands that differed by the nature of the substitute on phenyl ring of ligands. These ligands were incorporated into water-soluble rhodium-PNP complex catalysts that were used to regioselective hydroformylation of a series of terminal arylalkenes, providing efficient access to rac-α-aryl propionaldehydes in good to excellent yield (up to 97%) and branched-regioselectivity (up to 40:1 b/l ratio). Furthermore, gram-scale and diverse synthetic transformation demonstrated synthetic application of this methodology for non-steroidal antiinflammatory drugs.

Iron Catalyzed Hydroformylation of Alkenes under Mild Conditions: Evidence of an Fe(II) Catalyzed Process

Pandey, Swechchha,Raj, K. Vipin,Shinde, Dinesh R.,Vanka, Kumar,Kashyap, Varchaswal,Kurungot, Sreekumar,Vinod,Chikkali, Samir H.

supporting information, p. 4430 - 4439 (2018/04/05)

Earth abundant, first row transition metals offer a cheap and sustainable alternative to the rare and precious metals. However, utilization of first row metals in catalysis requires harsh reaction conditions, suffers from limited activity, and fails to tolerate functional groups. Reported here is a highly efficient iron catalyzed hydroformylation of alkenes under mild conditions. This protocol operates at 10-30 bar syngas pressure below 100 °C, utilizes readily available ligands, and applies to an array of olefins. Thus, the iron precursor [HFe(CO)4]-[Ph3PNPPh3]+ (1) in the presence of triphenyl phosphine catalyzes the hydroformylation of 1-hexene (S2), 1-octene (S1), 1-decene (S3), 1-dodecene (S4), 1-octadecene (S5), trimethoxy(vinyl)silane (S6), trimethyl(vinyl)silane (S7), cardanol (S8), 2,3-dihydrofuran (S9), allyl malonic acid (S10), styrene (S11), 4-methylstyrene (S12), 4-iBu-styrene (S13), 4-tBu-styrene (S14), 4-methoxy styrene (S15), 4-acetoxy styrene (S16), 4-bromo styrene (S17), 4-chloro styrene (S18), 4-vinylbenzonitrile (S19), 4-vinylbenzoic acid (S20), and allyl benzene (S21) to corresponding aldehydes in good to excellent yields. Both electron donating and electron withdrawing substituents could be tolerated and excellent conversions were obtained for S11-S20. Remarkably, the addition of 1 mol % acetic acid promotes the reaction to completion within 16-24 h. Detailed mechanistic investigations revealed in situ formation of an iron-dihydride complex [H2Fe(CO)2(PPh3)2] (A) as an active catalytic species. This finding was further supported by cyclic voltammetry investigations and intermediacy of an Fe(0)-Fe(II) species was established. Combined experimental and computational investigations support the existence of an iron-dihydride as the catalyst resting state, which then follows a Fe(II) based catalytic cycle to produce aldehyde.

Biocatalytic Parallel Interconnected Dynamic Asymmetric Disproportionation of α-Substituted Aldehydes: Atom-Efficient Access to Enantiopure (S)-Profens and Profenols

Tassano, Erika,Faber, Kurt,Hall, Mélanie

, p. 2742 - 2751 (2018/07/29)

The biocatalytic asymmetric disproportionation of aldehydes catalyzed by horse liver alcohol dehydrogenase (HLADH) was assessed in detail on a series of racemic 2-arylpropanals. Statistical optimization by means of design of experiments (DoE) allowed the identification of critical interdependencies between several reaction parameters and revealed a specific experimental window for reaching an ′optimal compromise′ in the reaction outcome. The biocatalytic system could be applied to a variety of 2-arylpropanals and granted access in a redox-neutral manner to enantioenriched (S)-profens and profenols following a parallel interconnected dynamic asymmetric transformation (PIDAT). The reaction can be performed in aqueous buffer at ambient conditions, does not rely on a sacrificial co-substrate, and requires only catalytic amounts of cofactor and a single enzyme. The high atom-efficiency was exemplified by the conversion of 75 mM of rac-2-phenylpropanal with 0.03 mol% of HLADH in the presence of ~0.013 eq. of oxidized nicotinamide adenine dinucleotide (NAD+), yielding 28.1 mM of (S)-2-phenylpropanol in 96% ee and 26.5 mM of (S)-2-phenylpropionic acid in 89% ee, in 73% overall conversion. Isolated yield of 62% was obtained on 100 mg-scale, with intact enantiopurities. (Figure presented.).

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 51407-46-6