Welcome to LookChem.com Sign In | Join Free

Science Details

Home > Chemical Encyclopedia > Science List > Details
  • Preparation and characterization of asymmetric planar supported bilayers composed of poly(bis-sorbylphosphatidylcholine) on N-OCTADECYLTRICHLOROSILANE (cas 112-04-9) SAMs

  • Add time:08/24/2019    Source:sciencedirect.com

    Planar supported lipid bilayers (PSLBs) have been widely studied as biomembrane models and biosensor scaffolds. For technological applications, a major limitation of PSLBs composed of fluid lipids is that the bilayer structure is readily disrupted when exposed to chemical, mechanical, and thermal stresses. A number of asymmetric supported bilayer structures, such as the hybrid bilayer membrane (HBM) and the tethered bilayer lipid membrane (tBLM), have been created as an alternative to symmetric PSLBs. In both HBMs and tBLMs, the inner monolayer is covalently attached to the substrate while the outer monolayer is typically composed of a fluid lipid. Here we address if cross-linking polymerization of the lipids in the outer monolayer of an asymmetric supported bilayer can achieve the high degree of stability observed previously for symmetric PSLBs in which both monolayers are cross-linked [E.E. Ross, L.J. Rozanski, T. Spratt, S.C. Liu, D.F. O'Brien, S.S. Saavedra, Langmuir 19 (2003) 1752]. To explore this issue, HBMs composed of an outer monolayer of a cross-linkable lipid, bis-sorbylphosphatidylcholine (bis-SorbPC), and an inner SAM were prepared and characterized. Several experimental conditions were varied: vesicle fusion time, polymerization method, and polymerization time and temperature. Under most conditions, bis-SorbPC cross-linking stabilized the HBM such that its bilayer structure was largely preserved after drying; however these films invariably contained sub-micron scale defects that exposed the hydrophobic core of the HBM. The defects appear to be caused by desorption of low molecular weight oligomers when the film is removed from water, rinsed, and dried. In contrast, poly(bis-SorbPC) PSLBs prepared under similar conditions by Ross et al. were nearly defect free. This comparison shows that formation of a cross-linked network in the outer leaflet of an asymmetric supported bilayer is insufficient to prevent lipid desorption; inter-leaflet covalent linking appears to be necessary to create supported poly(lipid) assemblies that are impervious to repeated drying and rehydration. The difference in stability is attributed to inter-leaflet cross-linking between monolayers which can form in symmetric bis-SorbPC PSLBs.

    We also recommend Trading Suppliers and Manufacturers of N-OCTADECYLTRICHLOROSILANE (cas 112-04-9). Pls Click Website Link as below: cas 112-04-9 suppliers

    Prev:Significantly improved stability of N-OCTADECYLTRICHLOROSILANE (cas 112-04-9) self-assembled monolayer by plasma pretreatment on mica
    Next:A novel binary mixture of caprylic acid/Nonanoic acid (cas 112-05-0) as latent heat storage for air conditioning and cooling)

  • Back】【Close 】【Print】【Add to favorite
Periodic Table
    Related Products