119929-87-2Relevant articles and documents
COMPOSITIONS AND METHODS INCLUDING CELL DEATH INDUCERS AND PROCASPASE ACTIVATION
-
Page/Page column 73, (2008/12/08)
Compositions and methods are disclosed in embodiments relating to induction of cell death such as in cancer cells. Compounds and related methods for synthesis and use thereof, including the use of compounds in therapy for the treatment of cancer and selective induction of apoptosis in cells are disclosed. Compounds are disclosed in connection with modification of procaspases such as procaspase-3. In embodiments, compositions are capable of activation of procaspase-3.
NK1 and NK3 antagonists
-
Page/Page column 28, (2010/02/14)
The invention is to a compound exhibiting neurokinin inhibitory properties, a pharmaceutical composition comprising same and a method of treatment for neurokinin-mediated conditions.
Design of selective peptidomimetic agonists for the human orphan receptor BRS-3
Weber, Dirk,Berger, Claudia,Eickelmann, Peter,Antel, Jochen,Kessler, Horst
, p. 1918 - 1930 (2007/10/03)
New tool substances may help to unravel the physiological role of the human orphan receptor BRS-3 and its possible use as a drug target for the treatment of obesity and cancer. In continuation of our work on BRS-3, the solid- and solution-phase synthesis of a library of low molecular weight peptidomimetic agonists based on the recently developed short peptide agonist 4 is described. Functional potencies of the compounds were determined measuring calcium mobilization in a fluorometric imaging plate reader (FLIPR) assay. Focusing on the N-terminus, the D-Phe-Gln moiety of 4 was modified in a combinatorial SAR-oriented medicinal chemistry approach. With the incorporation of N-arylated glycine and alanine building blocks azaglycine, piperazine, or piperidine and the synthesis of semicarbazides and semicarbazones, a number of highly potent and selective compounds with a reduced number of peptide bonds were obtained, which also should have enhanced metabolic stability.
Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors
Contreras,Parrot,Sippl,Rival,Wermuth
, p. 2707 - 2718 (2007/10/03)
Starting from the 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-6-phenylpyridazine 1, we performed the design, the synthesis, and the structure-activity relationships of a series of pyridazine analogues acting as AChE inhibitors. Structural modifications were achieved on four different parts of compound 1 and led to the following observations: (i) introduction of a lipophilic environment in the C-5 position of the pyridazine ring is favorable for the AChE-inhibitory activity and the AChE/BuChE selectivity; (ii) substitution and various replacements of the C-6 phenyl group are possible and led to equivalent or slightly more active derivatives; (iii) isosteric replacements or modifications of the benzylpiperidine moiety are detrimental to the activity. Among all derivatives prepared, the indenopyridazine derivative 4g was found to be the more potent inhibitor with an IC50 of 10 nM on electric eel AChE. Compared to compound 1, this represents a 12-fold increase in potency. Moreover, 3-[2-(1-benzylpiperidin-4-yl)ethylamino]-5-methyl-6-phenylpyridazine 4c, which showed an IC50 of 21 nM, is 100-times more selective for human AChE (human BuChE/AChE ratio of 24) than the reference compound tacrine.
Carboxylic acid derivatives, medicaments comprising these compounds, their use and processes for their production
-
, (2008/06/13)
The present invention relates to carboxylic acid derivatives of the general formula STR1 in which Ra to Rc, A, B, D, E and X1 to X3 are as defined in claim 1, their tautomers, their stereoisomers including their mixtures, and their salts, in particular their physiologically tolerated salts with inorganic or organic acids or bases, which have useful pharmacological properties, preferably aggregation-inhibiting inhibiting actions, medicaments containing these compounds, their use and processes for their preparation.