13074-06-1Relevant articles and documents
Designer α1,6-Fucosidase Mutants Enable Direct Core Fucosylation of Intact N-Glycopeptides and N-Glycoproteins
Li, Chao,Zhu, Shilei,Ma, Christopher,Wang, Lai-Xi
, p. 15074 - 15087 (2017)
Core fucosylation of N-glycoproteins plays a crucial role in modulating the biological functions of glycoproteins. Yet, the synthesis of structurally well-defined, core-fucosylated glycoproteins remains a challenging task due to the complexity in multistep chemical synthesis or the inability of the biosynthetic α1,6-fucosyltransferase (FUT8) to directly fucosylate full-size mature N-glycans in a chemoenzymatic approach. We report in this paper the design and generation of potential α1,6-fucosynthase and fucoligase for direct core fucosylation of intact N-glycoproteins. We found that mutation at the nucleophilic residue (D200) did not provide a typical glycosynthase from this bacterial enzyme, but several mutants with mutation at the general acid/base residue E274 of the Lactobacillus casei α1,6-fucosidase, including E274A, E274S, and E274G, acted as efficient glycoligases that could fucosylate a wide variety of complex N-glycopeptides and intact glycoproteins by using α-fucosyl fluoride as a simple donor substrate. Studies on the substrate specificity revealed that the α1,6-fucosidase mutants could introduce an α1,6-fucose moiety specifically at the Asn-linked GlcNAc moiety not only to GlcNAc-peptide but also to high-mannose and complex-type N-glycans in the context of N-glycopeptides, N-glycoproteins, and intact antibodies. This discovery opens a new avenue to a wide variety of homogeneous, core-fucosylated N-glycopeptides and N-glycoproteins that are hitherto difficult to obtain for structural and functional studies.
Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.
Matsumura, Tetsuko,Ishikawa, Toru,Kitajima, Junichi
, p. 455 - 459 (2002)
From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.
Isomerization of deoxyhexoses: green bioproduction of 1-deoxy-d-tagatose from l-fucose and of 6-deoxy-d-tagatose from d-fucose using Enterobacter agglomerans strain 221e
Yoshihara, Akihide,Haraguchi, Satoshi,Gullapalli, Pushpakiran,Rao, Davendar,Morimoto, Kenji,Takata, Goro,Jones, Nigel,Jenkinson, Sarah F.,Wormald, Mark R.,Dwek, Raymond A.,Fleet, George W.J.,Izumori, Ken
, p. 739 - 745 (2008)
1-Deoxy-d-tagatose was produced by the hydrogenation of 6-deoxy-l-galactose (l-fucose) to l-fucitol followed by oxidation with Enterobacter agglomerans 221e; a similar sequence on d-fucose afforded 6-deoxy-d-tagatose. Thus, the polylol dehydrogenase recognizes the d-galacto-configuration of both d-fucitol and l-fucitol. The procedures were conducted in water and show the power of green, environmentally friendly biotechnology in the preparation of new monosaccharides with a potential for novel bioactive properties. 6-Deoxy-d-tagatose was also synthesized from d-tagatose via the efficient formation of 1,2:3,4-di-O-isopropylidene-α-d-tagatofuranose; a difficult final removal of protecting groups by acid makes the biotechnological route more attractive.
Boronic acid recognition of non-interacting carbohydrates for biomedical applications: Increasing fluorescence signals of minimally interacting aldoses and sucralose
Resendez, Angel,Halim, Md Abdul,Singh, Jasmeet,Webb, Dominic-Luc,Singaram, Bakthan
, p. 9727 - 9733 (2017)
To address carbohydrates that are commonly used in biomedical applications with low binding affinities for boronic acid based detection systems, two chemical modification methods were utilized to increase sensitivity. Modified carbohydrates were analyzed
Modulating Electrostatic Interactions in Ion Pair Intermediates To Alter Site Selectivity in the C?O Deoxygenation of Sugars
Bowers, Bekah E.,Gagné, Michel R.,Lowe, Jared M.,Seo, Youngran
supporting information, p. 17297 - 17300 (2020/07/30)
Controlling which products one can access from the predefined biomass-derived sugars is challenging. Changing from CH2Cl2 to the greener alternative toluene alters which C?O bonds in a sugar are cleaved by the tris(pentafluorophenyl)borane/HSiR3 catalyst system. This increases the diversity of high-value products that can be obtained through one-step, high-yielding, catalytic transformations of the mono-, di-, and oligosaccharides. Computational methods helped identify this non-intuitive outcome in low dielectric solvents to non-isotropic electrostatic enhancements in the key ion pair intermediates, which influence the reaction coordinate in the reactivity-/selectivity-determining step. Molecular-level models for these effects have far-reaching consequences in stereoselective ion pair catalysis.
Effect of carbon chain length on catalytic C–O bond cleavage of polyols over Rh-ReOx/ZrO2 in aqueous phase
Besson, Michèle,Da Silva Perez, Denilson,Perret, Noémie,Pinel, Catherine,Sadier, Achraf
, (2019/08/30)
Production of linear deoxygenated C4 (butanetriols, -diols, and butanols), C5 (pentanetetraols, -triols, -diols, and pentanols), and C6 products (hexanepentaols, -tetraols, -triols, -diols, and hexanols) is achievable by hydrogenolysis of erythritol, xylitol, and sorbitol over supported-bimetallic Rh-ReOx (Re/Rh molar ratio 0.5) catalyst, respectively. After validation of the analytical methodology, the effect of some reaction parameters was studied. In addition to C–O bond cleavage by hydrogenolysis, these polyols can undergo parallel reactions such as epimerization, cyclic dehydration, and C–C bond cleavage. The time courses of each family of linear deoxygenated C4, C5, and C6 products confirmed that the sequence of appearance of the different categories of deoxygenated products followed a multiple sequential deoxygenation pathway. The highest selectivity to a mixture of linear deoxygenated C4, C5, and C6 products at 80percent conversion was favoured under high pressure in the presence of 3.7wt.percentRh-3.5wt.percentReOx/ZrO2 catalysts (54–71percent under 80 bar) at 200 °C.
Controlling Sugar Deoxygenation Products from Biomass by Choice of Fluoroarylborane Catalyst
Seo, Youngran,Lowe, Jared M.,Gagné, Michel R.
, p. 6648 - 6652 (2019/08/26)
The feedstocks from biomass are defined and limited by nature, but through the choice of catalyst, one may change the deoxygenation outcome. We report divergent but selective deoxygenation of sugars with triethylsilane (TESH) and two fluoroarylborane catalysts, B(C6F5)3 and B(3,5-CF3)2C6H3)3 (BAr3,5-CF3). To illustrate, persilylated 2-deoxyglucose shows exocyclic C-O bond cleavage/reduction with the less sterically congested BAr3,5-CF3, whereas endocyclic C-O bond cleavage/reduction predominates with the more Lewis acidic B(C6F5)3. Chiral furans and linear polyols can be selectively synthesized depending on the catalysts. Mechanistic studies demonstrate that the resting states of these catalysts are different.
METHOD FOR PRODUCING L-FUCOSE
-
, (2013/09/26)
Method for producing L-fucose includes in a first aspect, a method for the preparation of L-fucose, wherein L-fucose precursors are produced from pectin and L-fucose is produced from the L-fucose precursors; in a second aspect, a method for the preparation of L-fucose from D-galacturonic acid or a salt thereof, wherein L-fucose precursors are produced from D-galacturonic acid of a salt thereof, and L-fucose is produced from the L-fucose precursors; and an L-fucose precursor as shown in Formula A, wherein R is a linear or branched chain saturated hydrocarbon group with 1-6 carbon atoms, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-hexyl, etc., preferably a methyl group.
METHOD FOR PRODUCING L-FUCOSE
-
, (2012/05/04)
The present invention provides: in a first aspect, a method for the preparation of L-fucose, wherein L-fucose precursors are produced from pectin and L-fucose is produced from the L-fucose precursors; in a second aspect, a method for the preparation of L-fucose from D-galacturonic acid or a salt thereof, wherein L-fucose precursors are produced from D-galacturonic acid or a salt thereof, and L-fucose is produced from the L-fucose precursors; and an L-fucose precursoras shown in Formula A below, wherein R is a linear or branched chain saturated hydrocarbon group with 1-6 carbon atoms, such as methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, n-hexyl, etc., preferably a methyl group.
DEOXYKETOHEXOSE ISOMERASE AND METHOD FOR PRODUCING DEOXYHEXOSE AND DERIVATIVE THEREOF USING SAME
-
Page/Page column 15, (2010/05/13)
Providing 1- or 6-deoxy products corresponding to all of aldohexoses, ketohexoses and sugar alcohols, as based on Deoxy-Izumoring, as well as a method for systematically producing those products. A method for producing deoxyketohexose and a derivative thereof using a deoxyketohexose isomerase derived from Pseudomonas cichorii ST-24 (FERM BP-2736), comprising epimerizing 1-deoxy D-ketohexose or 6-deoxy D-ketohexose or 1-deoxy L-ketohexose or 6-deoxy L-ketohexose at position 3 to produce the individually corresponding 1-deoxy D-ketohexose or 6-deoxy D-ketohexose or 1-deoxy L-ketohexose or 6-deoxy L-ketohexose as an intended product.