15205-23-9Relevant articles and documents
Reusable Co-nanoparticles for general and selectiveN-alkylation of amines and ammonia with alcohols
Beller, Matthias,Gawande, Manoj B.,Jagadeesh, Rajenahally V.,Kadam, Ravishankar G.,Li, Xinmin,Ma, Zhuang,Petr, Martin,Zbo?il, Radek,Zhou, Bei
, p. 111 - 117 (2022/01/06)
A general cobalt-catalyzedN-alkylation of amines with alcohols by borrowing hydrogen methodology to prepare different kinds of amines is reported. The optimal catalyst for this transformation is prepared by pyrolysis of a specific templated material, which is generatedin situby mixing cobalt salts, nitrogen ligands and colloidal silica, and subsequent removal of silica. Applying this novel Co-nanoparticle-based material, >100 primary, secondary, and tertiary amines includingN-methylamines and selected drug molecules were conveniently prepared starting from inexpensive and easily accessible alcohols and amines or ammonia.
Carbon monoxide-driven osmium catalyzed reductive amination harvesting WGSR power
Afanasyev, Oleg I.,Biriukov, Klim O.,Chusov, Denis,Godovikova, Maria,Loginov, Dmitry A.,Nelyubina, Yulia V.,Tsygankov, Alexey A.,Vasilyev, Dmitry V.,Vinogradov, Mikhail M.
, p. 4922 - 4930 (2021/07/26)
Herein, we present the first example of Os-catalyzed efficient reductive amination under water-gas shift reaction conditions. The developed catalytic systems are formedin situin aqueous solutions, employ as small as 0.0625 mol% osmium and are capable of delivering reductive amination products for a broad range of aliphatic and aromatic carbonyl compounds and amines. The scope of the reaction, active catalytic systems, possible limitations of the method and DFT-supported mechanistic considerations are discussed in detail in the manuscript.
Trimethyl Borate-Catalyzed, Solvent-Free Reductive Amination
Ramachandran, P. Veeraraghavan,Choudhary, Shivani,Singh, Aman
, p. 4274 - 4280 (2021/03/09)
Solvent-free reductive amination of aldehydes and ketones with aliphatic and aromatic amines in high-to-excellent yields has been achieved with sub-stoichiometric trimethyl borate as promoter and ammonia borane as reductant.
Design, Synthesis, and Structure-Activity Relationship of Economical Triazole Sulfonamide Aryl Derivatives with High Fungicidal Activity
Hao, Ge-Fei,Li, Yi-Tao,Lin, Jian,Xu, Jun-Xing,Yao, Wen-Qiang,Zhou, Si
, p. 6792 - 6801 (2020/07/08)
Plant fungal diseases have caused great decreases in crop quality and yield. As one of the considerable agricultural diseases, cucumber downy mildew (CDM) caused by pseudoperonospora cubensis seriously influences the production of cucumber. Amisulbrom is a commercial agricultural fungicide developed by Nissan Chemical, Ltd., for the control of oomycetes diseases that is highly effective against CDM. However, the synthesis of amisulbrom has a high cost because of the introduction of the bromoindole ring. In addition, the continuous use of amisulbrom might increase the risk of resistance development. Hence, there is an imperative to develop active fungicides with new scaffolds but low cost against CDM. In this study, a series of 1,2,4-triazole-1,3-disulfonamide derivatives were designed, synthesized, and screened. Compound 1j showed a comparable fungicidal activity with amisulbrom, but it was low cost and ecofriendly. It has the potential to be developed as a new fungicide candidate against CDM. Further investigations of structure-activity relationship exhibited the structural requirements of 1,2,4-triazole-1,3-disulfonamide and appropriate modification in N-alkyl benzylamine groups with high fungicidal activity. This research will provide powerful guidance for the design of highly active lead compounds with a novel skeleton and low cost.
High-Throughput Screening of Reductive Amination Reactions Using Desorption Electrospray Ionization Mass Spectrometry
Cooks, R. Graham,Ferreira, Christina R.,Li, Yangjie,Logsdon, David L.,Paschoal Sobreira, Tiago Jose,Thompson, David H.
supporting information, p. 1647 - 1657 (2020/10/26)
This study describes the latest generation of a high-throughput screening system that is capable of screening thousands of organic reactions in a single day. This system combines a liquid handling robot with desorption electrospray ionization (DESI) mass spectrometry (MS) for a rapid reaction mixture preparation, accelerated synthesis, and automated MS analysis. A total of 3840 unique reductive amination reactions were screened to demonstrate the throughputs that are capable with the system. Products, byproducts, and intermediates were all monitored in full-scan mass spectra, generating a complete view of the reaction progress. Tandem mass spectrometry experiments were conducted to verify the identity of the products formed. The amine and electrophile reactivity trends represented in the data match what is expected from theory, indicating that the system accurately models the reaction performance. The DESI results correlated well with those generated using more traditional mass spectrometry techniques like liquid chromatography-mass spectrometry, validating the data generated by the system.
One-pot, chemoselective synthesis of secondary amines from aryl nitriles using a PdPt-Fe3O4nanoparticle catalyst
Byun, Sangmoon,Cho, Ahra,Cho, Jin Hee,Kim, B. Moon
, p. 4201 - 4209 (2020/09/23)
We have developed a new catalytic method for the one-pot, cascade synthesis of unsymmetrical secondary amines via the reductive amination of aryl nitriles with nitroalkanes using a PdPt-Fe3O4 nanoparticle (NP) catalyst. The use of a bimetallic catalyst resulted in enhanced reactivity and selectivity compared to that of either monometallic Pd-Fe3O4 or the Pt-Fe3O4 NP catalyst. Using this bimetallic catalytic system, we were successful in the synthesis of various unsymmetrical secondary amines under mild conditions. However, aryl nitriles containing an electron-donating substituent were rather resistant to the reductive amination, and when hexafluoroisopropanol (HFIP) was used as a co-solvent, the reaction selectivity and yield for unsymmetrical secondary amines increased dramatically. Using the catalyst system, one-pot, gram-scale synthesis of indole was possible from 2-nitrophenylacetonitrile. Due to the magnetic property of the Fe3O4 support, the bimetallic catalyst could easily be recycled using an external magnet at least four times.
Cine-Silylative Ring-Opening of α-Methyl Azacycles Enabled by the Silylium-Induced C-N Bond Cleavage
Zhang, Jianbo,Chang, Sukbok
, p. 12585 - 12590 (2020/08/21)
Described herein is the development of a borane-catalyzed cine-silylative ring-opening of α-methyl azacycles. This transformation involves four-step cascade processes: (i) exo-dehydrogenation of alicyclic amine, (ii) hydrosilylation of the resultant enamine, (iii) silylium-induced cis-β-amino elimination to open the ring skeleton, and (iv) hydrosilylation of the terminal olefin. The present borane catalysis also works efficiently for the C-N bond cleavage of acyclic tertiary amines. On the basis of experimental and computational studies, the silicon atom was elucidated to play a pivotal role in the β-amino elimination step.
Unlocking the catalytic potential of tris(3,4,5-trifluorophenyl)borane with microwave irradiation
Carden, Jamie L.,Gierlichs, Lukas J.,Wass, Duncan F.,Browne, Duncan L.,Melen, Rebecca L.
supporting information, p. 318 - 321 (2019/01/09)
The catalytic activity of tris(3,4,5-trifluorophenyl)borane has been explored in the 1,2-hydroboration reactions of unsaturated substrates. Under conventional conditions, the borane was found to be active only in the hydroboration of aldehyde, ketone and imine substrates, with alkenes and alkynes not being reduced effectively. The use of microwave irradiation on the other hand has permitted alkenes and alkynes to be hydroborated in good yields.
Catalyst-Free Reductive Coupling of Aromatic and Aliphatic Nitro Compounds with Organohalides
Rauser, Marian,Eckert, Raphael,Gerbershagen, Max,Niggemann, Meike
supporting information, p. 6713 - 6717 (2019/04/14)
A rare reductive coupling of nitro compounds with organohalides has been realized. The reaction is initiated by a partial reduction of the nitro group to a nitrenoid intermediate. Therefore, not only aromatic but also aliphatic nitro compounds are efficiently transformed into monoalkylated amines, with organohalides as the alkylating agent. Given the innate reactivity of the nitrenoid, a catalyst is not required, resulting in a high tolerance for aryl halide substituents in both starting materials.
Direct Reductive N-Functionalization of Aliphatic Nitro Compounds
Rauser, Marian,Ascheberg, Christoph,Niggemann, Meike
supporting information, p. 3970 - 3974 (2018/02/26)
The first general protocol for the direct reductive N-functionalization of aliphatic nitro compounds is presented. The nitro group is partially reduced to a nitrenoid, with a mild and readily available combination of B2pin2 and zinc organyls. Thereby, the formation of an unstable nitroso intermediate is avoided, which has so far severely limited reductive transformations of aliphatic nitro compounds. The reaction is concluded by an electrophilic amination of zinc organyls.