171349-99-8Relevant articles and documents
Homogeneous cobalt-catalyzed deoxygenative hydrogenation of amides to amines
Papa, Veronica,Cabrero-Antonino, Jose R.,Spannenberg, Anke,Junge, Kathrin,Beller, Matthias
, p. 6116 - 6128 (2020/11/03)
The first general and efficient cobalt-catalyzed deoxygenative hydrogenation of amides to amines is presented. The optimal catalytic system based on a combination of [Co(NTf2)2] and (p-anisyl)triphos (L3) in the presence of [Me3SiOTf] as acidic co-catalyst facilitates the direct hydrogenation of a broad range of amides to the corresponding amines under mild conditions. A set of control experiments indicate that, after the initial reduction of the amide carboxylic group to the well-known hemiaminal intermediate, the reaction mainly proceeds through C-O bond cleavage though other pathways might be also involved to a minor extent. This journal is
Tailored Cobalt-Catalysts for Reductive Alkylation of Anilines with Carboxylic Acids under Mild Conditions
Liu, Weiping,Sahoo, Basudev,Spannenberg, Anke,Junge, Kathrin,Beller, Matthias
supporting information, p. 11673 - 11677 (2018/09/10)
The first cobalt-catalyzed hydrogenative N-methylation and alkylation of amines with readily available carboxylic acid feedstocks as alkylating agents and H2 as ideal reductant is described. Combination of tailor-made triphos ligands with cobalt(II) tetrafluoroborate significantly improved the efficiency, thus promoting the reaction under milder conditions. This novel protocol allows for a broad substrate scope with good functional group tolerance, even in the presence of reducible alkenes, esters, and amides.
Catalytic N-Alkylation of Amines Using Carboxylic Acids and Molecular Hydrogen
Sorribes, Iván,Cabrero-Antonino, Jose R.,Vicent, Cristian,Junge, Kathrin,Beller, Matthias
supporting information, p. 13580 - 13587 (2015/11/10)
A convenient, practical and green N-alkylation of amines has been accomplished by applying readily available carboxylic acids in the presence of molecular hydrogen. Applying an in situ formed ruthenium/triphos complex and an organic acid as cocatalyst, a broad range of alkylated secondary and tertiary amines are obtained in good to excellent yields. This novel method is also successfully applied for the synthesis of unsymmetrically substituted N-methyl/alkyl anilines through a direct three-component coupling reaction of the corresponding amines, carboxylic acids, and CO2 as a C1 source.