178557-13-6Relevant articles and documents
2C-B-fly-NBOMe metabolites in rat urine, human liver microsomes and c. Elegans: Confirmation with synthesized analytical standards
?e?ková, Hedvika,?íchová, Klára,?uláková, Anna,Hájková, Kate?ina,Jurásek, Bronislav,Kucha?, Martin,Leonhardt, Tereza,Nykodemová, Jitka,Pálení?ek, Tomá?,Palivec, Petr,Rimpelová, Silvie
, (2021/11/30)
Compounds from the N-benzylphenethylamine (NBPEA) class of novel psychoactive substances are being increasingly utilized in neurobiological and clinical research, as diagnostic tools, or for recreational purposes. To understand the pharmacology, safety, or potential toxicity of these substances, elucidating their metabolic fate is therefore of the utmost interest. Several studies on NBPEA metabolism have emerged, but scarce information about substances with a tetrahydrobenzodifuran (“Fly”) moiety is available. Here, we investigated the metabolism of 2-(8-bromo-2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b’]difuran-4-yl)-N-(2-methoxybenzyl)ethan-1-amine (2C-B-Fly-NBOMe) in three different systems: isolated human liver microsomes, Cunninghamella elegans mycelium, and in rats in vivo. Phase I and II metabolites of 2C-B-Fly-NBOMe were first detected in an untargeted screening and identified by liquid chromatography–tandem mass spectrometry (LC– MS/MS). Several hypothesized metabolites were then synthesized as reference standards; knowledge of their fragmentation patterns was utilized for confirmation or tentative identification of isomers. Altogether, thirty-five phase I and nine phase II 2C-B-Fly-NBOMe metabolites were detected. Major detected metabolic pathways were mono-and poly-hydroxylation, O-demethylation, oxidative debromination, and to a lesser extent also N-demethoxybenzylation, followed by glucuronidation and/or N-acetylation. Differences were observed for the three used media. The highest number of metabolites and at highest concentration were found in human liver microsomes. In vivo metabolites detected from rat urine included two poly-hydroxylated metabolites found only in this media. Mycelium matrix contained several dehydrogenated, N-oxygenated, and dibrominated metabolites.
SELECTIVE INHIBITORS OF NLRP3 INFLAMMASOME
-
Paragraph 0652, (2019/02/15)
The present disclosure relates to compounds of Formula (I): (I); and to their pharmaceutically acceptable salts, pharmaceutical compositions, methods of use, and methods for their preparation. The compounds disclosed herein are useful for inhibiting the maturation of cytokines of the IL-1 family by inhibiting inflammasomes and may be used in the treatment of disorders in which inflammasome activity is implicated, such as autoinflammatory and autoimmune diseases and cancers.
Synthesis and cytotoxic activity of novel tetrahydrobenzodifuran–imidazolium salt derivatives
Zhang, Chao-Bo,Liu, Yang,Liu, Zheng-Fen,Duan, Sheng-Zu,Li, Min-Yan,Chen, Wen,Li, Yan,Zhang, Hong-Bin,Yang, Xiao-Dong
supporting information, p. 1808 - 1814 (2017/04/04)
The synthesis of a series of novel 4-substituted 2,3,6,7-tetrahydrobenzo [1,2-b;4,5-b′]difuran–1H-imidazolium salts is presented. The biological properties of the compounds were evaluated in vitro against a panel of human tumor cell lines. Results suggest that the 5,6-dimethyl-benzimidazole or 2-methyl-benzimidazole ring, and substitution of the imidazolyl-3-position with a 2-naphthylmethyl substituent or 2-naphthylacyl substituent, were important to the cytotoxic activity. Notably, 3-(2-Naphthylmethyl)-1-((2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)methyl)-1H-5,6-dimethyl-benzimidazol-3-ium bromide (42) was found to be the most potent derivative against five human tumor cell lines with IC50 values of 1.06–4.34?μM and more selective towards SMMC-7721, A549 and SW480 cell lines. 3-(2-Naphthylacyl)-1-((2,3,6,7-tetrahydrobenzo[1,2-b;4,5-b′]difuran-4-yl)methyl)-1H-2-methyl-benzimidazol-3-ium bromide (37) showed higher selectivity to SMMC-7721 and MCF-7 cell lines with IC50 values 2.7-fold and 8.4-fold lower than DDP. Study regarding to the antitumor mechanism of action showed that compound 37 could induce cell cycle G1 phase arrest and apoptosis in SMMC-7721 cells.
Dihydrobenzofuran analogues of hallucinogens. 3. Models of 4-substituted (2,5-dimethoxyphenyl)alkylamine derivatives with rigidified methoxy groups
Monte, Aaron P.,Marona-Lewicka, Danuta,Parker, Matthew A.,Wainscott, David B.,Nelson, David L.,Nichols, David E.
, p. 2953 - 2961 (2007/10/03)
Tetrahydrobenzodifuran functionalities were employed as conformationally restricted bioisosteres of the aromatic methoxy groups in prototypical hallucinogenic phenylalkylamines 1 and 2. Thus, a series of 8-substituted 1- (2,3,6,7-tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-2-aminoalkanes (7a-e) were prepared and evaluated for activity in the two-lever drug discrimination paradigm in rats trained to discriminate saline from LSD tartrate (0.08 mg/kg) and for the ability to displace [3H]ketanserin from rat cortical homogenate 5-HT(2A) receptors and [3H]-8-OH-DPAT from rat hippocampal homogenate 5-HT(1A) receptors. In addition, 1-(8-bromo-2,3,6,7- tetrahydrobenzo[1,2-b:4,5-b']difuran-4-yl)-2-aminopropane (7b), which was found to be extremely potent in the rat in vivo assays, was evaluated for its ability to compete with [125I]DOI and [3H]ketanserin binding to cells expressing cloned human 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptors. All of the dihydrofuranyl compounds having a hydrophobic substituent para to the alkylamine side chain had activities in both the in vitro and in vivo assays that equaled or surpassed the activity of the analogous conformationally flexible parent compounds. For example, 7b substituted for LSD in the drug discrimination assay with an ED50 of 61 nmol/kg and had K(i) values in the nanomolar to subnanomolar range for the displacement of radioligand from rat and human 5-HT2 receptors, making it one of the most potent hallucinogen- like phenylalkylamine derivatives reported to date. The results suggest that the dihydrofuran rings in these new analogues effectively model the active binding conformations of the methoxy groups of the parent compounds 1 and 2. In addition, the results provide information about the topography and relative orientation of residues involved in agonist binding in the serotonin 5-HT2 receptors.